
NI-CAN™
Programmer Reference

Manual for Win32

November 1996 Edition
Part Number 321369A-01

© Copyright 1996 National Instruments Corporation.
All Rights Reserved.

Internet Support
support@natinst.com

E-mail: info@natinst.com

FTP Site: ftp.natinst.com

Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
(512) 418-1111

Telephone Support (U.S.)
Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 527 2321, France 01 48 14 24 24, Germany 089 741 31 30,
Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970,
Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466,
Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70,
Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by
receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues.
National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to
follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other
events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
LabVIEW® and NI-CAN™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical or
clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the user
or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v NI-CAN Programmer Reference Manual for Win32

Table
of

Contents

About This Manual
How to Use the Manual Set ...ix
Organization of This Manual...x
Conventions Used in This Manual...xi
Related Documentation..xi
Customer Communication ...xii

Chapter 1
NI-CAN Host Data Types

Chapter 2
NI-CAN Functions

Function Names ...2-1
Purpose ..2-1
Format..2-1
Input and Output ..2-1
Description...2-1
Return Status..2-1
Examples..2-2
List of NI-CAN Functions ...2-2
ncAction...2-3
ncCloseObject..2-5
ncConfig ..2-6
ncCreateNotification..2-10
ncGetAttribute ...2-14
ncOpenObject ..2-16
ncRead ...2-19

Table of Contents

NI-CAN Programmer Reference Manual for Win32 vi © National Instruments Corporation

ncSetAttribute ... 2-23
ncWaitForState.. 2-25
ncWrite.. 2-27

Chapter 3
NI-CAN Objects

Object Names .. 3-1
Encapsulates.. 3-1
Description ..3-1
Attributes... 3-1
Functions... 3-2
CAN Network Interface Object... 3-3
CAN Object... 3-18

Appendix A
Object States

Appendix B
Status Codes and Qualifiers

NI-CAN Status Format.. B-1
Error/Warning Indicators (Severity) ... B-1
Code.. B-2
Qualifier .. B-2

Status Codes and Qualifiers .. B-2
NC_SUCCESS (0000 Hex) .. B-3
NC_ERR_TIMEOUT (0001 Hex) .. B-4
NC_ERR_DRIVER (0002 Hex) ... B-5
NC_ERR_BAD_NAME (0003 Hex).. B-5
NC_ERR_BAD_PARAM (0004 Hex).. B-6
NC_ERR_BAD_VALUE (0005 Hex) .. B-7
NC_ERR_ALREADY_OPEN (0006 Hex)... B-8
NC_ERR_NOT_STOPPED (0007 Hex)... B-8
NC_ERR_OVERFLOW (0008 Hex) .. B-9
NC_ERR_OLD_DATA (0009 Hex)... B-10
NC_ERR_CAN_BUS_OFF (0101 Hex)... B-11

Table of Contents

© National Instruments Corporation vii NI-CAN Programmer Reference Manual for Win32

Appendix C
Customer Communication

Glossary

Index

Figures
Figure 3-1. Example of Periodic Transmission...3-30
Figure 3-2. Example of Polling Remote Data Using ncWrite.....................................3-30
Figure 3-3. Example of Periodic Polling of Remote Data ..3-31

Figure A-1. State Format ...A-1

Figure B-1. Status Format..B-1

Tables
Table 1-1. NI-CAN Host Data Types ..1-1

Table 2-1. NI-CAN Functions ...2-2

Table 3-1. Actions Supported by the CAN Network Interface Object3-13
Table 3-2. NCTYPE_CAN_FRAME_TIMED Field Names.....................................3-14
Table 3-3. NCTYPE_CAN_FRAME Field Names ...3-15
Table 3-4. NCTYPE_CAN_DATA_TIMED Field Names3-25
Table 3-5. NCTYPE_CAN_DATA Field Names..3-25
Table 3-6. Attribute Settings for Receive Value Unsolicited3-26
Table 3-7. Attribute Settings for Receive Value Periodically....................................3-27
Table 3-8. Attribute Settings for Receive Value with Call ..3-27
Table 3-9. Attribute Settings for Transmit Value Periodically3-28
Table 3-10. Attribute Settings for Transmit Value by Response Only3-29
Table 3-11. Attribute Settings for Transmit Value with Call.......................................3-29

Table A-1. NI-CAN Object States..A-1

Table B-1. Determining Severity of Status ..B-2
Table B-2. Summary of Status Codes ..B-3

© National Instruments Corporation ix NI-CAN Programmer Reference Manual for Win32

About
This

Manual

This manual is a programming reference for functions, objects, and data
types in the NI-CAN software for Win32, the 32-bit programming
environment of Windows 95 and Windows NT. The NI-CAN software
for Windows 95 is meant to be used with Windows 95. The NI-CAN
software for Windows NT is meant to be used with Windows NT version
3.51 or higher. This manual assumes that you are already familiar with
the Windows system you are using.

How to Use the Manual Set

Novice
Users

Experienced
Users

Getting Started
Manual

Installation and
Configuration

NI-CAN
User Manual

for Windows 95
and Windows NT

Application
Development
and Examples

NI-CAN Programmer
Reference Manual

for Win32

Function
and Object

Descriptions

About This Manual

NI-CAN Programmer Reference Manual for Win32 x © National Instruments Corporation

Use the getting started manual to install and configure your CAN
hardware and NI-CAN software.

Use the NI-CAN User Manual for Windows 95 and Windows NT to learn
the basics of NI-CAN and how to develop an application. The user
manual also contains debugging information and examples.

Use this NI-CAN Programmer Reference Manual for Win32 for specific
information about each NI-CAN function and object, such as format,
parameters, and possible errors.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, NI-CAN Host Data Types, describes the host data types
used by NI-CAN functions.

• Chapter 2, NI-CAN Functions, lists the NI-CAN functions and
describes the format, purpose, parameters, and return status for each
function.

• Chapter 3, NI-CAN Objects, lists the syntax of the ObjName for each
object class, specifies what the object encapsulates, and gives an
overview of the major features and uses of each object.

• Appendix A, NI-CAN Object States, describes the NI-CAN object
states.

• Appendix B, Status Codes and Qualifiers, describes the NI-CAN
status codes and the qualifiers for each code.

• Appendix C, Customer Communication, contains forms you can use
to request help from National Instruments or to comment on our
products and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

About This Manual

© National Instruments Corporation xi NI-CAN Programmer Reference Manual for Win32

Conventions Used in This Manual
The following conventions are used in this manual.

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence File»Page Setup»Options»
Substitute Fonts directs you to pull down the File menu, select the
Page Setup item, select Options, and finally select the Substitute Fonts
options from the last dialog box.

bold Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, windows, Windows 95 tabs,
or LEDs.

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept. This font also denotes text for which you supply the appropriate
word or value, such as in Windows 3.x.

italic Italic text in this font denotes that you must supply the appropriate words
monospace or values in the place of these items.

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font also is used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names,
functions, operations, variables, filenames, and extensions, and for
statements and comments taken from program code.

The Glossary lists abbreviations, acronyms, metric prefixes, mnemonics,
symbols, and terms.

Related Documentation
The following documents contain information that you may find helpful
as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of
Digital Information—Controller Area Network (CAN) for
High-Speed Communication

• CAN Specification Version 2.0, 1991, Robert Bosch Gmbh.,
Postfach 500, D-7000 Stuttgart 1

About This Manual

NI-CAN Programmer Reference Manual for Win32 xii © National Instruments Corporation

• LabVIEW Online Reference

• Win32 Software Development Kit (SDK) online help

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix C, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 NI-CAN Programmer Reference Manual for Win32

NI-CAN Host Data Types
1

Chapter

This chapter describes the host data types used by NI-CAN functions and objects.

All host data types are given specific names for reference within this manual. In general,
all NI-CAN host data types begin with NCTYPE_.

Table 1-1. NI-CAN Host Data Types

NI-CAN
Data Type ANSI C Binding

LabVIEW
Binding Description

NCTYPE_type _P NCTYPE_type * N/A Location of variable with type type .

NCTYPE_INT8 signed char I8 8-bit signed integer.

NCTYPE_INT16 signed short I16 16-bit signed integer.

NCTYPE_INT32 signed long I32 32-bit signed integer.

NCTYPE_UINT8 unsigned char U8 8-bit unsigned integer.

NCTYPE_UINT16 unsigned short U16 16-bit unsigned integer.

NCTYPE_UINT32 unsigned long U32 32-bit unsigned integer.

NCTYPE_BOOL NCTYPE_UINT8 TF (boolean) Boolean value. In ANSI C, constants
NC_TRUE (1) and NC_FALSE (0) are used
for comparisons.

NCTYPE_STRING char * , array of
characters
terminated by null
character \0

abc (string) ASCII character string.

NCTYPE_ANY_P void * N/A Reference to variable of unknown type,
used in cases where actual data type may
vary depending on particular context.

Chapter 1 NI-CAN Host Data Types

NI-CAN Programmer Reference Manual for Win32 1-2 © National Instruments Corporation

Table 1-1. NI-CAN Host Data Types (Continued)

NI-CAN
Data Type ANSI C Binding

LabVIEW
Binding Description

NCTYPE_OBJH NCTYPE_UINT32 Type definition
ObjHandle (U32)

Handle referring to object.

NCTYPE_VERSION NCTYPE_UINT32 U32 Version number. Major, minor,
subminor, and beta version numbers are
encoded in unsigned 32-bit integer from
high byte to low byte. Letters are
encoded as numeric equivalents (‘A’ is 1,
‘Z’ is 26, etc.). Version 2.0B would be
hexadecimal 02000200, and Beta version
1.4.2 beta 7 would be hex 01040207.

NCTYPE_DURATION NCTYPE_UINT32 U32 Time duration indicating elapsed time
between two events. Time is expressed
in 1 ms increments. 10 seconds is 10000.
Special constant NC_DURATION_NONE (0)
is used for zero duration, and
NC_DURATION_INFINITE (FFFFFFFF
hex) is used for infinite duration.

NCTYPE_ABS_TIME unsigned 64-bit
integer compatible
with the Win32
FILETIME type

64-bit
double-precision
floating-point (DBL)
compatible with
LabVIEW time

For information on use, refer to ncRead

function description in Chapter 2,
NI-CAN Functions.

NCTYPE_ATTRID NCTYPE_UINT32 U32 Attribute identifier.

NCTYPE_OPCODE NCTYPE_UINT32 U32 Operation code used with ncAction

function.

NCTYPE_PROTOCOL NCTYPE_UINT32 U32 Supported device network protocol, such
as NC_PROTOCOL_CAN (1).

NCTYPE_BAUD_RATE NCTYPE_UINT32 U32 Baud rate. 125 kb/s would be encoded as
125000 .

NCTYPE_STATE NCTYPE_UINT32 U32 Object states, encoded as 32-bit mask
(one bit for each state). For information,
refer to Appendix A, NI-CAN Object
States.

Chapter 1 NI-CAN Host Data Types

© National Instruments Corporation 1-3 NI-CAN Programmer Reference Manual for Win32

Table 1-1. NI-CAN Host Data Types (Continued)

NI-CAN
Data Type ANSI C Binding

LabVIEW
Binding Description

NCTYPE_STATUS NCTYPE_INT32 I32 Status returned from all NI-CAN
functions. Status is zero for success, less
than zero for an error, and greater than
zero for a warning. For information,
refer to Appendix B, Status Codes and
Qualifiers.

NCTYPE_CAN_ARBID NCTYPE_UINT32 U32 CAN arbitration ID. 30th bit is accessed
using bitmask NC_FL_CAN_ARBID_XTD

(20000000 hex). If this bit is clear, CAN
arbitration ID is standard (11-bit). If this
bit is set, CAN arbitration ID is extended
(29-bit). Special constant
NC_CAN_ARBID_NONE (CFFFFFFF hex)
indicates no CAN arbitration ID.

NCTYPE_CAN_FRAME struct Input terminals of
ncWriteNet.vi

Structure used with ncWrite and CAN
Network Interface Object. For
information, refer to description of CAN
Network Interface Object in Chapter 3,
NI-CAN Objects.

NCTYPE_CAN_FRAME

_TIMED

struct Output terminals
of ncReadNet.vi

Structure used with ncRead and CAN
Network Interface Object. For
information, refer to description of CAN
Network Interface Object in Chapter 3,
NI-CAN Objects.

NCTYPE_CAN_DATA struct Input terminals of
ncWriteObj.vi

Structure used with ncWrite and CAN
Object. For information, refer to
description of CAN Object in Chapter 3,
NI-CAN Objects.

NCTYPE_CAN_DATA_

TIMED

struct Output terminals
of ncReadObj.vi

Structure used with ncRead and CAN
Object For information, refer to
description of CAN Object in Chapter 3,
NI-CAN Objects.

© National Instruments Corporation 2-1 NI-CAN Programmer Reference Manual for Win32

NI-CAN Functions
2

Chapter

This chapter lists the NI-CAN functions and describes the format, purpose, parameters, and
return status for each function.

Unless otherwise stated, each NI-CAN function suspends execution of the calling process
until it completes.

Function Names
The functions in this chapter are listed alphabetically.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function for LabVIEW, and for the C
programming language.

Input and Output
The input and output parameters for each function are listed.

Description
The description section gives details about the purpose and effect of each function.

Return Status
After every NI-CAN function description, all possible return status codes are listed. For
complete information on status format and the qualifiers used with each status code, refer
to Appendix B, Status Codes and Qualifiers.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-2 © National Instruments Corporation

Examples
Each function description includes sample C language code showing how to use the
function. For more detailed examples or for example LabVIEW code, refer to the example
programs that are included with your NI-CAN software. The example programs are
described in Chapter 4, Application Examples, in the NI-CAN User Manual for Windows 95
and Windows NT.

List of NI-CAN Functions
The following table contains an alphabetical list of the NI-CAN functions.

Table 2-1. NI-CAN Functions

Function Purpose

ncAction Perform an action on an object

ncCloseObject Close an object

ncConfig Configure an object prior to its use

ncCreateNotification Create a notification for an object

ncGetAttribute Get the value of an object’s attribute

ncOpenObject Open an object.

ncRead Read the data value of an object

ncSetAttribute Set the value of an object’s attribute

ncWaitForState Wait for one or more states to occur in an object

ncWrite Write the data value of an object

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-3 NI-CAN Programmer Reference Manual for Win32

ncAction

Purpose
Perform an action on an object.

Format

LabVIEW

C
NCTYPE_STATUS ncAction(NCTYPE_OBJH ObjHandle,

NCTYPE_OPCODE Opcode,
NCTYPE_UINT32 Param)

Input
ObjHandle Object handle

Opcode Operation code indicating which action to perform

Param Parameter whose meaning is defined by Opcode

Description
ncAction is a general purpose function you can use to perform an action on the object
specified by ObjHandle . Its normal use is to start and stop network communication on a
CAN Network Interface Object.

For the most frequently used and/or complex actions, NI-CAN provides functions such as
ncOpenObject and ncRead . ncAction provides an easy, general purpose way to
perform actions that are used less frequently or are relatively simple.

Return Status
NC_SUCCESS Success (no warning or error).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_BAD_VALUE Invalid values for configuration attributes. Returned only
when Opcode is NC_OP_START.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-4 © National Instruments Corporation

ncAction
(Continued)

Example
This example assumes the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

Start communication on a CAN Network Interface Object. Because Param is ignored for
NC_OP_START, you can use any value (this example uses 0).
status = ncAction(objh, NC_OP_START, 0);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-5 NI-CAN Programmer Reference Manual for Win32

ncCloseObject

Purpose
Close an object.

Format

LabVIEW

C
NCTYPE_STATUS ncCloseObject(NCTYPE_OBJH ObjHandle)

Input
ObjHandle Object handle

Description
ncCloseObject closes an object when it no longer needs to be in use, such as when the
application is about to exit. When an object is closed, NI-CAN stops all pending operations
for the object, and you can no longer use the ObjHandle in your application.

Return Status

NC_SUCCESS Success (no warning or error).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
This example assumes the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

Close an object.
status = ncCloseObject (objh);

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-6 © National Instruments Corporation

ncConfig

Purpose
Configure an object before using it.

Format

LabVIEW

C
NCTYPE_STATUS ncConfig(NCTYPE_STRING ObjName,

NCTYPE_UINT32 NumAttrs,
NCTYPE_ATTRID_P AttrIdList,
NCTYPE_UINT32_P AttrValueList)

Input
ObjName ASCII name of the object to configure

NumAttrs Number of configuration attributes

AttrIdList List of configuration attribute identifiers

AttrValueList List of configuration attribute values

Description
ncConfig initializes the configuration attributes of an object before opening it. If you
have configured objects using the NI-CAN Configuration utility, you do not need to call
this function in your application. You can use the ncConfig function in advanced
applications that must be entirely self-contained, and thus cannot use the external NI-CAN
Configuration utility. For any object, ncConfig overrides the configuration specified in
the NI-CAN Configuration utility, if any.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-7 NI-CAN Programmer Reference Manual for Win32

ncConfig
(Continued)

ObjName uses the same object hierarchy syntax as ncOpenObject ; it cannot be a
user-defined alias.

NumAttr indicates the number of configuration attributes in AttrIdList and
AttrValueList . AttrIdList is an array of attribute IDs, and AttrValueList is an
array of values. The attributes in AttrIdList must have Config permissions in the
description of the object. The host data type for AttrValueList is NCTYPE_UINT32,
which all configuration attributes can use.

As an alternative to using ncConfig , you can use ncSetAttribute on an open object to
initialize its configuration attributes. However, you cannot use ncSetAttribute to set
configuration attributes unless the object is in its stopped state (not communicating).

Using the LabVIEW Configuration Functions
The LabVIEW configuration functions do not require the input parameters ObjName,
NumAttrs , AttrIdList , and AttrValueList . Instead of wiring attribute lists into the
function itself, you can use the front panel to enter the needed configuration attributes. If
the NumAttrs input is either missing or zero, front panel configuration is enabled;
otherwise, the input parameters are used for configuration.

Two different configuration functions are provided, one for CAN Network Interface
Objects and one for CAN Objects. For each object class, you can use the front panel to
enter the appropriate configuration attributes. The attribute ID of each configuration
attribute is specified automatically, and the appropriate name is included next to the front
panel entry for the value of the attribute.

For each configuration function, LabVIEW keeps only a single front panel image in
memory. Therefore, to allow multiple front panel configurations for a given object class,
you must save a separate copy of the configuration function for each object you use. The
recommended scheme for configuring CAN Network Interface Objects is as follows:

1. Use File»Open to open ncConfigNet.vi .

2. For each CAN Network Interface Object used by your application, use File»Save A
Copy As to save a copy of ncConfigNet.vi . For clarity, you can use the ObjName

in the filename (such as ConfCAN0.vi).

3. Close the original ncConfigNet.vi .

4. Use Select a VI from the Functions Palette to open each saved copy and place it into
the block diagram, wiring the Error in/out terminals consecutively.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-8 © National Instruments Corporation

ncConfig
(Continued)

5. Use the front panel of each configuration function to enter needed attribute values and
ObjName.

6. From the front panel of each configuration function, select Operate»Make Current
Values Default, then select File»Save, to ensure that the values just entered are saved.

Use the same scheme for configuring CAN Objects with ncConfigObj.vi .

Return Status
NC_SUCCESS Success (no warning or error).

NC_ERR_BAD_NAME Invalid or unrecognized name in ObjName.

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_ALREADY_OPEN Object already opened.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

NC_ERR_BAD_VALUE Invalid values for configuration attributes.

Example
This example assumes the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_ATTRID AttrIdList[9];

NCTYPE_UINT32 AttrValueList[9];

Configure a CAN Network Interface Object.
AttrIdList[0] = NC_ATTR_BAUD_RATE;

AttrValueList[0] = 125000;

AttrIdList[1] = NC_ATTR_START_ON_OPEN

AttrValueList[1] = NC_TRUE;

AttrIdList[2] = NC_ATTR_READ_Q_LEN;

AttrValueList[2] = 10;

AttrIdList[3] = NC_ATTR_WRITE_Q_LEN;

AttrValueList[3] = 10;

AttrIdList[4] = NC_ATTR_TIMESTAMPING;

AttrValueList[4] = NC_TRUE;

AttrIdList[5] = NC_ATTR_CAN_COMP_STD;

AttrValueList[5] = 0;

AttrIdList[6] = NC_ATTR_CAN_MASK_STD;

AttrValueList[6] = 0;

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-9 NI-CAN Programmer Reference Manual for Win32

ncConfig
(Continued)

AttrIdList[7] = NC_ATTR_CAN_COMP_XTD;

AttrValueList[7] = 0;

AttrIdList[8] = NC_ATTR_CAN_MASK_XTD;

AttrValueList[8] = 0;

status = ncConfig ("CAN0", 9, AttrIdList, AttrValueList);

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-10 © National Instruments Corporation

ncCreateNotification

Purpose
Create a notification for an object.

Format

LabVIEW

N/A

C
NCTYPE_STATUS ncCreateNotification(NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,
NCTYPE_DURATION Timeout,
NCTYPE_ANY_P RefData,
NCTYPE_NOTIFY_CALLBACK

Callback)

Input
ObjHandle Object handle

DesiredState States for which notification is sent

Timeout Length of time to wait

RefData Pointer to user-specified reference data

Callback Address of your callback function

Description
ncCreateNotification creates a notification for the object specified by ObjHandle . A
notification is an operating system mechanism that the NI-CAN driver uses to
communicate state changes to your application. The ncCreateNotification function is
not applicable to LabVIEW programming. Use the ncWaitForState function to wait for
state changes within LabVIEW.

Upon successful return from ncCreateNotification , the notification callback is
invoked whenever one of the states specified by DesiredState occurs in the object. If
DesiredState is zero, notifications are disabled for the object specified by ObjHandle .

The NI-CAN driver waits up to Timeout for one of the bits set in DesiredState to
become set in the attribute NC_ATTR_STATE. You can use the special Timeout value
NC_DURATION_INFINITE to wait indefinitely.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-11 NI-CAN Programmer Reference Manual for Win32

ncCreateNotification
(Continued)

The Callback parameter provides the address of a callback function in your application.
Within the Callback function, you can call any of the NI-CAN functions except
ncCreateNotification .

With the RefData parameter, you provide a pointer that is sent to all notifications for the
given object. This pointer normally provides reference data for use within the Callback

function. For example, when you create a notification for the NC_ST_READ_AVAIL state,
RefData is often the data pointer that you pass to ncRead in order to read available data.
If the callback function does not need reference data, you can set RefData to NULL.

Callback Prototype
NCTYPE_STATE _NCFUNC_ Callback (NCTYPE_OBJH ObjHandle,

NCTYPE_STATE State,
NCTYPE_STATUS Status,
NCTYPE_ANY_P RefData);

Callback Parameters

ObjHandle Object handle

State Current state of object

Status Object status

RefData Pointer to your reference data

Callback Return Value
The value you return from the callback indicates the desired states to re-enable for
notification. If you no longer want to receive notifications for the callback, return a value
of zero.

Callback Description
In the prototype for Callback , _NCFUNC_ ensures a proper calling scheme between the
NI-CAN driver and your callback.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-12 © National Instruments Corporation

ncCreateNotification
(Continued)

The Callback function executes in a separate thread in your process. Therefore, it has
access to any process global data, but not to thread local data. If the callback needs to
access global data, you must protect that access using synchronization primitives (such as
semaphores), because the callback is running in a different thread context. Alternatively,
you can avoid the issue of data protection entirely if the callback simply posts a message to
your application using the Win32 PostMessage function. For complete information on
multithreading issues, refer to the Win32 Software Development Kit (SDK) online help.

The ObjHandle is the same object handle passed to ncCreateNotification . It
identifies the object generating the notification, which is useful when you use the same
callback function for notifications from multiple objects.

The State parameter holds the current state of the object that generated the notification
(NC_ATTR_STATE attribute). If the Timeout passed to ncCreateNotification expires
before the desired states occur, the NI-CAN driver invokes the callback with State equal
to zero.

The Status parameter holds the current status of the object. If the notification is sent for
the background error and warning states (NC_ST_ERROR or NC_ST_WARNING), Status

holds the background status attribute (NC_ATTR_STATUS) of the object. If an error occurs
with the notification, State is zero and Status holds the error status. The most common
notification error occurs when the Timeout passed to ncCreateNotification expires
before the desired states occur (NC_ERR_TIMEOUT status code with
NC_QUAL_TIMO_FUNCTION qualifier). If no background error or warning is reported, and
no notification error occurred, Status is NC_SUCCESS.

The RefData parameter is the same pointer passed to ncCreateNotification , and it
accesses reference data for the Callback function.

Return Status
NC_SUCCESS Success (no warning or error).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-13 NI-CAN Programmer Reference Manual for Win32

ncCreateNotification
(Continued)

Example

Create a notification for the NC_ST_READ_AVAIL state.
NCTYPE_STATE _NCFUNC_ MyCallback (NCTYPE_OBJH ObjHandle,

NCTYPE_STATE State,

NCTYPE_STATUS Status,

NCTYPE_ANY_P RefData){
.
.
.
{

void main() {

NCTYPE_STATUS status;

NCTYPE_OBJH objh

.

.

.

/* Create notification to handle data available in read queue. The

notification waits indefinitely. No RefData is used.*/

status = ncCreateNotification (objh, NC_ST_READ_AVAIL,

 NC_DURATION_INFINITE, NULL, MyCallback);

.

.

.

{

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-14 © National Instruments Corporation

ncGetAttribute

Purpose
Get the value of an object attribute.

Format

LabVIEW

C
NCTYPE_STATUS ncGetAttribute(NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,
NCTYPE_UINT32 AttrSize,
NCTYPE_ANY_P AttrPtr)

Input
ObjHandle Object handle

AttrId Identifier of the attribute to get

AttrSize Size of the attribute in bytes (C only)

Output

AttrPtr Returned attribute value. For C, the attribute value is returned to you
(AttrValue) using the pointer AttrPtr . For LabVIEW, the attribute value is

returned to you in AttrValue .

Description
ncGetAttribute gets the value of the attribute specified by AttrId from the object
specified by ObjHandle . Within NI-CAN objects, you use attributes to access
configuration settings, status, and other information about the object, but not data.

For C, AttrPtr points to the variable used to receive the attribute value. Its type is
undefined so that you can use the appropriate host data type for AttrId . AttrSize

indicates the size of the variable that AttrPtr points to.

For LabVIEW, this function gets the value of an object’s attribute into a LabVIEW U32

(AttrValue), so a size is not needed.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-15 NI-CAN Programmer Reference Manual for Win32

ncGetAttribute
(Continued)

Return Status
NC_SUCCESS Success (no warning or error).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
This example assumes the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_BAUD_RATE baudrate;

Get the value of an object's baud rate attribute.
status = ncGetAttribute(objh, NC_ATTR_BAUD_RATE,

sizeof(baudrate), &baudrate);

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-16 © National Instruments Corporation

ncOpenObject

Purpose
Open an object.

Format

LabVIEW

C
NCTYPE_STATUS ncOpenObject(NCTYPE_STRING ObjName,

NCTYPE_OBJH_P ObjHandlePtr)

Input
ObjName ASCII name of the object to open

Output

ObjHandlePtr Object handle you use with all subsequent NI-CAN function calls.
(ObjHandle out) For C, the object handle is returned to you using the pointer

ObjHandlePtr . For LabVIEW, the object handle is returned to you
in ObjHandle out .

Description
ncOpenObject takes the name of an object to open and returns a handle to that object that
you use with subsequent NI-CAN function calls.

You can use two syntax schemes can used for ObjName: the object hierarchy syntax and
the user-defined alias syntax.

Use the object hierarchy syntax to open any object supported by NI-CAN. The object
hierarchy syntax specifies the complete hierarchy of an object so that NI-CAN knows both
which object to open and where that object is located. This syntax consists of a list of one
or more objects in the NI-CAN object hierarchy, each separated by a double colon. When
more than one object is required, any number of blanks can exist before or after the double
colon.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-17 NI-CAN Programmer Reference Manual for Win32

ncOpenObject
(Continued)

Specify objects in the NI-CAN hierarchy using a class name followed by an instance
number. The class name is a string of letters that describes the class to which the object
belongs. Class names are not case-sensitive. The instance number is a numeric value that
indicates which object of a class is being specified. Instance numbers are normally
specified in decimal notation. If hexadecimal notation is desired, the number must be
preceded by “0x,” as in the C programming language. For more information on NI-CAN
object names, refer to Chapter 3, NI-CAN Objects.

The second scheme you can use for ObjName is that of user-defined aliases. You create a
user-defined alias with the NI-CAN Configuration utility for use as an alias to a complete
object hierarchy.

The syntax for user-defined aliases consists of a single ASCII name preceded by ‘#’. The
‘#’ character differentiates user-defined aliases from the predefined names of the object
hierarchy.

Although NI-CAN can generally be used by multiple applications simultaneously, it does
not allow more than one application to open the same object. For example, if one
application opens CAN0, and another application attempts to open CAN0, the second
ncOpenObjec t returns the error NC_ERR_ALREADY_OPEN. It is legal for one application to
open CAN0::STD14 and another application to open CAN0::STD21 , because the two
objects are considered distinct.

If ncOpenObject is successful, a handle to the newly opened object is returned. You use
this object handle for all subsequent function calls for the object.

Return Status
NC_SUCCESS Success (no warning or error).

NC_ERR_BAD_NAME Invalid or unrecognized name in ObjName.

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_ALREADY_OPEN Object already opened by another application.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-18 © National Instruments Corporation

ncOpenObject
(Continued)

Examples
These examples assume the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

1. Open a CAN Network Interface Object.
status = ncOpenObject ("CAN0", &objh);

2. Open a CAN Object at standard arbitration ID 14 on CAN1.
status = ncOpenObject ("CAN1::STD14", &objh);

3. Open CAN object at extended arbitration ID 2043 hex on CAN2.
status = ncOpenObject ("CAN2::XTD0x2043", &objh);

4. Open an alias to the CAN Object at standard arbitration ID 14 on CAN1. This alias was
specified within the NI-CAN Configuration utility.
status = ncOpenObject ("#EngineSpeed", &objh);

5. This call returns an error of NC_ERR_BAD_NAME with qualifier 2 (80020003 hex),
because the Z makes the CAN Object name invalid.
status = ncOpenObject ("CAN0::ZTD5", &objh);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-19 NI-CAN Programmer Reference Manual for Win32

ncRead

Purpose
Read the data value of an object.

Format

LabVIEW

C
NCTYPE_STATUS ncRead(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr)

Input
ObjHandle Object handle

DataSize Size of the data in bytes (C only)

Output

DataPtr Data read from object. For C, the data is returned to you using the
pointer DataPtr . For LabVIEW, the data is returned to you using
object-specific output terminals.

Description
ncRead reads the data value of the object specified by ObjHandle .

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-20 © National Instruments Corporation

ncRead
(Continued)

For C, DataPtr points to the variable that holds the data. Its type is undefined so that you
can use the appropriate host data type. DataSize indicates the size of variable pointed to
by DataPtr .

For LabVIEW, the data is returned to you using object-specific output terminals.

You use ncRead to obtain data from the read queue of an object. Because NI-CAN
handles the read queue in the background, this function does not wait for new data to
arrive. To ensure that new data is available before calling ncRead , first wait for the
NC_ST_READ_AVAIL state. The NC_ST_READ_AVAIL state transitions from false to true
when NI-CAN places a new data item into an empty read queue, and remains true until you
read the last data item from the queue.

When you call ncRead for an empty read queue (NC_ST_READ_AVAIL false), the data
from the previous call to ncRead is returned to you again, along with the
NC_ERR_OLD_DATA warning. If no data item has yet arrived for the read queue, a default
data item is returned, which consists of all zeros.

When a new data item arrives for a full queue, NI-CAN discards the item, and the next call
to ncRead returns the NC_ERR_OVERFLOW error, along with the qualifier
NC_QUAL_OVFL_READ. You can avoid this overflow behavior by setting the read queue
length to zero. When a new data item arrives for a zero length queue, it simply overwrites
the previous item without indicating an overflow. The NC_ST_READ_AVAIL state and
NC_ERR_OLD_DATA warning still behave as usual, but you can ignore them if you only
want the most recent data. You can use the NC_ATTR_READ_Q_LEN attribute to configure
the read queue length.

The host data type returned from ncRead is different for each NI-CAN object class. This
type normally includes data received from the network along with a timestamp of when
that data arrived. For information on this type for specific objects, refer to Chapter 3,
NI-CAN Objects.

For C, the timestamp that ncRead returns is an unsigned 64-bit integer compatible with the
Win32 FILETIME type. When data arrives from the network and is placed in the read
queue, NI-CAN obtains this timestamp from the absolute time attribute
(NC_ATTR_ABS_TIME) of the CAN Network Interface Object. This absolute time is kept in
a Coordinated Universal Time (UTC) format, the standard used for global timekeeping
(times that are not specific to local time zone considerations). UTC-based time is loosely
defined as the current date and time of day in Greenwich, England. Microsoft defines its
UTC time (FILETIME) as a 64-bit counter of 100 ns intervals that have elapsed since
12:00 a.m., January 1, 1601. Because the timestamp returned by ncRead is compatible

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-21 NI-CAN Programmer Reference Manual for Win32

ncRead
(Continued)

with FILETIME , you can pass it into the Win32 FileTimeToLocalFileTime function to
convert it to your local time zone format, then pass the resulting local time to the Win32
FileTimeToSystemTime function to convert it to the Win32 SYSTEMTIME type (a
structure with fields for year, month, day, and so on). For more information on Win32 time
types and functions, refer to the Win32 Software Development Kit (SDK) online help.

For LabVIEW, the timestamp that ncRead returns is compatible with the LabVIEW time
format. LabVIEW time is a double-precision floating-point number (DBL) representing
the number of seconds that have elapsed since 12:00 a.m., Friday, January 1, 1904,
Coordinated Universal Time (UTC). You can pass this timestamp into LabVIEW time
functions such as Seconds To Date/Time . You can also display the time in a numeric
indicator of type DBL by using Format & Precision from the front panel to change from
Numeric to Time & Date format (set Seconds Precision to 3 to display milliseconds).
For more information, refer to the LabVIEW Online Reference.

Return Status
NC_SUCCESS Success (no warning or error).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

NC_ERR_OLD_DATA Data returned from ncRead is the same as the data returned
from the previous call to ncRead .

NC_ERR_OVERFLOW Read queue overflow. This error code does not apply to
ncRead itself, but indicates an error in background
communication. A valid data value is still returned to you
from ncRead , and all other data received prior to the overflow
remains in the read queue.

NC_ERR_TIMEOUT Watchdog timeout expired for a CAN Object. This error code
does not apply to ncRead itself, but indicates an error in
background communication.

NC_ERR_CAN_BUS_OFF Error or warning indicating CAN communication errors. This
error code does not apply to ncRead itself, but indicates an
error in background communication.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-22 © National Instruments Corporation

ncRead
(Continued)

Examples
These examples assume the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_CAN_FRAME_TIMED rframe;

NCTYPE_CAN_DATA_TIMED rdata;

1. Read from a CAN Network Interface Object.
status = ncRead(objh, sizeof(rframe), &rframe);

2. Read from a CAN Object.
status = ncRead(objh, sizeof(rdata), &rdata);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-23 NI-CAN Programmer Reference Manual for Win32

ncSetAttribute

Purpose
Set the value of an object’s attribute.

Format

LabVIEW

C
NCTYPE_STATUS ncSetAttribute(NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,
NCTYPE_UINT32 AttrSize,
NCTYPE_ANY_P AttrPtr)

Input
ObjHandle Object handle

AttrId Identifier of the attribute to set

AttrSize Size of the attribute in bytes (C only)

AttrPtr New attribute value. For C, you provide the attribute value using the
(AttrValue) pointer AttrPtr . For LabVIEW, you provide the attribute value in

AttrValue .

Description
ncSetAttribute sets the value of the attribute specified by AttrId in the object
specified by ObjHandle . Within NI-CAN objects, you use attributes to access
configuration settings, status, and other information about the object, but not data.

For C, AttrPtr points to the variable that holds the attribute value. Its type is undefined
so that you can use the appropriate host data type for AttrId . AttrSize indicates the size
of variable pointed to by AttrPtr .

For LabVIEW, this function sets the value of an object’s attribute using a LabVIEW U32

(AttrValue), so a size is not needed.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-24 © National Instruments Corporation

ncSetAttribute
(Continued)

Return Status
NC_SUCCESS Success (no error or warning).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_NOT_STOPPED Attempted to set a configuration attribute while the object was
running.

NC_ERR_BAD_VALUE The value of the attribute is invalid for the specified AttrId .

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Example
This example assumes the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_BAUD_RATE baudrate;

Set the baud rate of an object to 500 kb/s.
baud rate = 500000;

status = ncSetAttribute(objh, NC_ATTR_BAUD_RATE,

sizeof(baudrate), &baudrate);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-25 NI-CAN Programmer Reference Manual for Win32

ncWaitForState

Purpose
Wait for one or more states to occur in an object.

Format

LabVIEW

C
NCTYPE_STATUS ncWaitForState(NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,
NCTYPE_DURATION Timeout,
NCTYPE_STATE_P StatePtr)

Input
ObjHandle Object handle

DesiredState States to wait for (bitmask)

Timeout Length of time to wait

Output

StatePtr Current state of object when desired states occur. For C, the state is
(State) returned to you using the pointer StatePtr . For LabVIEW, the

state is returned to you in State .

Description
You use ncWaitforState to wait for one or more states to occur in the object specified by
ObjHandle .

This function waits up to Timeout for one of the bits set in DesiredState to become set
in the attribute NC_ATTR_STATE. You can use the special Timeout value
NC_DURATION_INFINITE (FFFFFFFF hex) to wait indefinitely.

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-26 © National Instruments Corporation

ncWaitForState
(Continued)

When the states in DesiredState are detected, the function returns the current value of
the NC_ATTR_STATE attribute. If an error occurs, the state returned is zero.

While waiting for the desired states, ncWaitForState suspends only the current
execution. For C, other Win32 threads in your application can still execute. For
LabVIEW, functions that are not directly connected to ncWaitForState can execute.

Return Status
NC_SUCCESS Success (no error or warning).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_TIMEOUT Timeout expired before any desired states occurred.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Examples
These examples assume the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_STATE state;

1. Wait no more than 10 seconds for data to arrive in the read queue.
status = ncWaitforState(objh, NC_ST_READ_AVAIL, 10000, &state);

2. Wait no more than 100 milliseconds for a previous ncWrite to succeed, or for a
background warning/error, such as bus off, to occur.
status = ncWaitforState(objh, (NC_ST_WRITE_SUCCESS |

NC_ST_WARNING | NC_ST_ERROR), 100, &state);

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-27 NI-CAN Programmer Reference Manual for Win32

ncWrite

Purpose
Write the data value of an object.

Format

LabVIEW

C
NCTYPE_STATUS ncWrite(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr)

Input
ObjHandle Object handle

DataSize Size of the data in bytes

DataPtr Data written to the object. For C, you provide the data using the
pointer DataPtr . For LabVIEW, you provide the data using
object-specific input terminals.

Description
ncWrite writes the data value of the object specified by ObjHandle .

For C, DataPtr points to the variable from which the data is written. Its type is undefined
so that you can use the appropriate host data type. DataSize indicates the size of variable
pointed to by DataPtr .

Chapter 2 NI-CAN Functions

NI-CAN Programmer Reference Manual for Win32 2-28 © National Instruments Corporation

ncWrite
(Continued)

For LabVIEW, you provide the data using object-specific input terminals.

You use ncWrite to place data into the write queue of an object. Because NI-CAN
handles the write queue in the background, this function does not wait for data to be
transmitted on the network. In order to make sure that the data is transmitted successfully
after calling ncWrite , wait for the NC_ST_WRITE_SUCCESS state. The
NC_ST_WRITE_SUCCESS state transitions from false to true when the write queue is empty,
and NI-CAN has successfully transmitted the last data item onto the network. The
NC_ST_WRITE_SUCCESS state remains true until you write another data item into the write
queue.

When you configure an object to transmit data onto the network periodically, it obtains data
from the object's write queue each period. If the write queue is empty, NI-CAN transmits
the data of the previous period again. NI-CAN transmits this data repetitively until the next
call to ncWrite .

If an object's write queue is full, a call to ncWrite returns the NC_ERR_OVERFLOW error
(along with qualifier NC_QUAL_OVFL_WRITE), and NI-CAN discards the data you provide.
One way to avoid this overflow error is to set the write queue length to zero. When
ncWrite is called for a zero length queue, the data item you provide with ncWrite simply
overwrites the previous data item without indicating an overflow. A zero length write
queue is often useful when an object is configured to transmit data onto the network
periodically, and you simply want to transmit the most recent data value each period. It is
also useful when you plan to always wait for NC_ST_WRITE_SUCCESS after every call to
ncWrite . You can use the NC_ATTR_WRITE_Q_LEN attribute to configure the write queue
length.

The host data type you provide to ncWrite is different for each NI-CAN object class. For
information on this type for specific objects, refer to Chapter 3, NI-CAN Objects.

Return Status
NC_SUCCESS Success (no error or warning).

NC_ERR_BAD_PARAM Invalid parameter.

NC_ERR_DRIVER Implementation-specific error in the NI-CAN driver.

Chapter 2 NI-CAN Functions

© National Instruments Corporation 2-29 NI-CAN Programmer Reference Manual for Win32

ncWrite
(Continued)

NC_ERR_OVERFLOW Write queue overflow. This error occurs when the write
queue of the object is full, and the data value you provided
cannot be queued for later transmission. The error can occur
only if the write queue length (NC_ATTR_WRITE_Q_LEN) is
nonzero.

NC_ERR_TIMEOUT Watchdog timeout expired for a CAN Object. This error code
does not apply to ncWrite itself, but indicates an error in
background communication.

NC_ERR_CAN_BUS_OFF Error or warning indicating CAN communication errors. This
error code does not apply to ncWrite itself, but indicates an
error in background communication.

Examples
These examples assume the following declarations:

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

NCTYPE_CAN_FRAME_TIMED wframe;

NCTYPE_CAN_DATA_TIMED wdata;

1. Write to a CAN Network Interface Object.
status = ncWrite(objh, sizeof(wframe), &wframe);

2. Write to a CAN Object.
status = ncWrite(objh, sizeof(wdata), &wdata);

© National Instruments Corporation 3-1 NI-CAN Programmer Reference Manual for Win32

NI-CAN Objects
3

Chapter

This chapter lists the syntax of the ObjName for each object class, specifies what the object
encapsulates, and gives an overview of the major features and uses of each object.

Object Names
The objects in this chapter are listed in alphabetical order. For each object class, the syntax
of its ObjName is discussed.

Encapsulates
Each object description includes a brief summary of what the object encapsulates.

Description
The description section gives an overview of the major features and uses of the object.

Attributes
The attributes section lists and describes the attributes for each object. For each attribute,
the description lists its host data type, its attribute ID, and its permissions. Attribute
permissions consist of one of the following:

Get You can read the attribute at any time, but never write it.

Set You can write the attribute at any time, but never read it.

Get/Set You can read or write the attribute at any time.

Config You can read the attribute at any time, but you can write it only
when the object is in the stopped state—that is, not communicating.
These attributes are called configuration attributes. NI-CAN obtains
the initial value of configuration attributes from the NI-CAN
Configuration utility.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-2 © National Instruments Corporation

Functions
The functions section provides specific notes about using NI-CAN functions with the
object. For the ncRead and ncWrite functions, the data type used with the DataPtr

parameter is described. For the ncAction function, each supported Opcode is listed and
described.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-3 NI-CAN Programmer Reference Manual for Win32

CAN Network Interface Object

Object Name
CANx

The letters CAN indicate the class of the CAN Network Interface Object, and x is a decimal
number starting at zero that indicates which CAN network interface is being referenced
(CAN0, CAN1, and so on). Use the NI-CAN Configuration utility to associate instance
numbers with physical network interface ports.

Encapsulates
CAN network interface

Description
The CAN Network Interface Object encapsulates a physical interface to a CAN network,
usually a CAN port on an AT, PCI, or PCMCIA interface.

The communication facilities of the CAN Network Interface Object basically consist of a
read queue and a write queue. You use the ncRead function to read CAN frames from the
read queue in the order they arrive. When an incoming frame arrives, the
NC_ST_READ_AVAIL state sets, to notify you that one or more CAN frames are in the read
queue. You use the ncWrite function to write CAN frames to the write queue. NI-CAN
transmits CAN frames from the write queue in the order written. When all CAN frames in
the write queue are transmitted successfully, the NC_ST_WRITE_SUCCESS state sets.

You can use the CAN Network Interface Object for communication along with CAN
Objects. When one or more CAN Objects are open, the CAN Network Interface Object
cannot receive frames that would normally be handled by the CAN Objects. For example,
if you open the CAN Object named CAN0::STD5 , then the CAN Network Interface Object
cannot receive frames with standard arbitration ID 5.

The CAN Network Interface Object contains certain configuration attributes, such as baud
rate, which you must set properly before starting communication. In most cases, you can
use the NI-CAN Configuration utility to set the values of such attributes so that you do not
need to configure them within your application.

If you choose not to configure the CAN Network Interface Object to start automatically
(NC_ATTR_START_ON_OPEN attribute is false), it opens in the stopped state (not
communicating). To start network communication for the CAN Network Interface Object
and all higher level CAN Objects, set the desired values for attributes, then call ncAction

with NC_OP_START. You might want to do this when you do not want to rely on the
NI-CAN Configuration utility, but instead prefer to configure objects dynamically, within

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-4 © National Instruments Corporation

CAN Network Interface Object
(Continued)

the application. Another scenario in which you might want to postpone communication is
if you have an application that tests an installed network. In this sort of environment, you
would load test patterns (lists of data values) into various write queues, then use
NC_OP_START to start the test sequence.

Error Active, Error Passive, and Bus Off States
The CAN communication controller used by NI-CAN network interfaces is the Intel 82527.
Although this chip provides no direct means of detecting the error passive state, it can
detect when one of its error counters increments above 96. When this occurs, NI-CAN sets
the NC_ST_WARNING state in the NC_ATTR_STATE attribute of the CAN Network Interface
Object and all of its higher level CAN Objects. The background status attribute
(NC_ATTR_STATUS) is set with the status code NC_ERR_CAN_BUS_OFF and a warning
severity.

When the transmit error counter of the Intel 82527 increments above 255, the network
interface transfers into the bus off state as dictated by the CAN protocol. The network
interface stops communication so that you can correct the defect in the network, such as a
malfunctioning cable or device. When bus off occurs, the NC_ST_ERROR and
NC_ST_STOPPED states are set in the NC_ATTR_STATE attribute of the CAN Network
Interface Object and all of its higher level CAN Objects. The background status attribute
(NC_ATTR_STATUS) is set with the status code NC_ERR_CAN_BUS_OFF and an error
severity.

If no CAN devices are connected to the network interface port, and you attempt to transmit
a frame, the NC_ERR_CAN_BUS_OFF status occurs with a warning severity. This warning
occurs because the missing acknowledgment bit increments the transmit error counter until
the network interface reaches the error passive state, but bus off state is never reached.

Whether the severity of NC_ERR_CAN_BUS_OFF is a warning or error, the status qualifier is
set to indicate the most recently detected communications error. This qualifier can have the
value NC_QUAL_CAN_STUFF (more than five equal bits), NC_QUAL_CAN_FORM (wrong
frame format), NC_QUAL_CAN_ACK (frame not acknowledged), NC_QUAL_CAN_BIT1

(transmitted one but detected zero), NC_QUAL_CAN_BIT0, or NC_QUAL_CAN_CRC (wrong
CRC checksum). Refer to the CAN protocol specification for a complete description of
these communication errors.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-5 NI-CAN Programmer Reference Manual for Win32

CAN Network Interface Object
(Continued)

Attributes

NC_ATTR_BAUD_RATE

Attribute ID NC_ATTR_BAUD_RATE

Hex Encoding 80000007

Data Type NCTYPE_BAUD_RATE

Permissions Config

Description Baud rate of the network interface. NI-CAN calculates values for
various CAN timing parameters and programs them based on the
baud rate. All common baud rates are supported, including 10 kb/s,
100 kb/s, 125 kb/s, 250 kb/s, 500 kb/s, and 1000 kb/s.

NC_ATTR_START_ON_OPEN

Attribute ID NC_ATTR_START_ON_OPEN

Hex Encoding 8000006

Data Type NCTYPE_BOOL

Permissions Config

Description Indicates whether communication starts for the CAN Network
Interface Object (and all CAN Objects above it in the hierarchy)
immediately after you open an object with ncOpenObject . You
must always set this attribute within the NI-CAN Configuration
utility. It is normally set to true after you use the utility to specify
needed configuration attributes such as baud rate. When this
attribute is set to true, NI-CAN starts communication to your
application transparently. When this attribute is set to false, you
must use ncAction to issue NC_OP_START on the CAN Network
Interface Object to begin network communication.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-6 © National Instruments Corporation

CAN Network Interface Object
(Continued)

NC_ATTR_STATE

Attribute ID NC_ATTR_STATE

Hex Encoding 8000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the CAN network interface. For more information,
refer to Appendix A, NI-CAN Object States.

NC_ATTR_STATUS

Attribute ID NC_ATTR_STATUS

Hex Encoding 8000000A

Data Type NCTYPE_STATUS

Permissions Get

Description Background status of the CAN network interface. Unless the
NC_ST_WARNING or NC_ST_ERROR states are set in
NC_ATTR_STATE, this attribute always returns NC_SUCCESS. When
you read an error or warning from this attribute, NI-CAN clears the
appropriate state and sets the background status back to
NC_SUCCESS. Sporadic, recoverable errors on the CAN network
interface are handled automatically by the protocol, and are not
reported as errors from NI-CAN. If a background error occurs, you
can read it from this attribute, or obtain it from the next call to
ncRead or ncWrite .

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-7 NI-CAN Programmer Reference Manual for Win32

CAN Network Interface Object
(Continued)

NC_ATTR_READ_Q_LEN

Attribute ID NC_ATTR_READ_Q_LEN

Hex Encoding 80000013

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the read queue. For more
information, refer to the description of the ncRead function in
Chapter 2, NI-CAN Functions.

NC_ATTR_WRITE_Q_LEN

Attribute ID NC_ATTR_WRITE_Q_LEN

Hex Encoding 80000014

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the write queue. For more
information, refer to the description of the ncWrite function in
Chapter 2, NI-CAN Functions.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-8 © National Instruments Corporation

CAN Network Interface Object
(Continued)

NC_ATTR_ABS_TIME

Attribute ID NC_ATTR_ABS_TIME

Hex Encoding 80000008

Data Type NC_ATTR_ABS_TIME

Permissions Get/Set

Description Absolute time of the network interface. The NI-CAN driver uses
this attribute for timestamps returned by ncRead . When the
NI-CAN driver first initializes (for example, when the host computer
is powered on), it is set to the system time of the host computer, and
thus keeps the absolute time since that point. You can set this
attribute to zero to keep absolute time from a given point, but then
the ncRead timestamp is no longer compatible with Win32
FILETIME or LabVIEW time. For more information, refer to the
description of the ncRead function in Chapter 2, NI-CAN Functions.

This attribute applies to all objects of the CAN network interface
hardware product. For example, if an interface board contains two
network interface ports, this attribute applies to both CAN Network
Interface Objects.

NC_ATTR_TIMESTAMPING

Attribute ID NC_ATTR_TIMESTAMPING

Hex Encoding 80000010

Data Type NCTYPE_BOOL

Permissions Config

Description Indicates whether NI-CAN calculates a timestamp for every entry it
places into the read queue. The timestamp is taken from the current
value of the CAN Network Interface Object’s NC_ATTR_ABS_TIME

attribute when NI-CAN places an entry is placed into the read queue.
When you disable timestamping, the host data type for ncRead still
contains the timestamp field (for consistency), but the timestamp is
always returned as zero.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-9 NI-CAN Programmer Reference Manual for Win32

CAN Network Interface Object
(Continued)

NC_ATTR_READ_PENDING

Attribute ID NC_ATTR_READ_PENDING

Hex Encoding 80000011

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the read queue. If
NC_ATTR_READ_PENDING is zero, the NC_ST_READ_AVAIL state is
clear.

NC_ATTR_WRITE_PENDING

Attribute ID NC_ATTR_WRITE_PENDING

Hex Encoding 80000012

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the write queue. If
NC_ST_WRITE_PENDING is zero, the NC_ST_WRITE_SUCCESS state
is set (after NI-CAN successfully transmits the final frame).

NC_ATTR_PROTOCOL

Attribute ID NC_ATTR_PROTOCOL

Hex Encoding 80000001

Data Type NCTYPE_PROTOCOL

Permissions Get

Description Protocol implemented by the CAN Network Interface Object. The
value is always NC_PROTOCOL_CAN (00000001 hex).

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-10 © National Instruments Corporation

CAN Network Interface Object
(Continued)

NC_ATTR_PROTOCOL_VERSION

Attribute ID NC_ATTR_PROTOCOL_VERSION

Hex Encoding 80000002

Data Type NCTYPE_VERSION

Permissions Get

Description Version that indicates the level of conformance to the protocol
specification. The value is always hex 02000200 (major version 2,
minor version 0, subminor B), to indicate conformity with CAN 2.0
Parts A and B. The CAN implementation under NI-CAN also
complies with ISO 11898.

NC_ATTR_SOFTWARE_VERSION

Attribute ID NC_ATTR_SOFTWARE_VERSION

Hex Encoding 80000003

Data Type NCTYPE_VERSION

Permissions Get

Description Version of the NI-CAN driver that implements this object as well as
all objects above it in the object hierarchy. This is the National
Instruments version number, not the version of the protocol.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-11 NI-CAN Programmer Reference Manual for Win32

CAN Network Interface Object
(Continued)

NC_ATTR_CAN_COMP_STD

Attribute ID NC_ATTR_CAN_COMP_STD

Hex Encoding 80010001

Data Type NCTYPE_CAN_ARBID

Permissions Config

Description CAN arbitration ID for the standard frame comparator. This
comparator filters all incoming standard (11-bit) CAN frames placed
into the read queue. The NC_FL_CAN_ARBID_XTD bit must be clear
for any value written to this attribute. For more information, refer to
the description of NCTYPE_CAN_ARBID in Chapter 1, NI-CAN Host
Data Types.

If you intend to use CAN Objects as the sole means of receiving
standard CAN frames from the network, you should disable all
standard frame reception in the CAN Network Interface Object by
setting this attribute to NC_CAN_ARBID_NONE (CFFFFFFF hex).
With this setting, the network interface is best able to filter out all
incoming standard CAN frames except those handled by the CAN
Objects.

NC_ATTR_CAN_MASK_STD

Attribute ID NC_ATTR_CAN_MASK_STD

Hex Encoding 80010002

Data Type NCTYPE_UINT32

Permissions Config

Description Bitmask used in conjunction with NC_ATTR_CAN_COMP_STD for
filtration of incoming standard CAN frames. For each bit set in the
mask, NI-CAN checks the corresponding bit in the standard frame
comparator for a match. Bits in the mask that are clear are treated as
don’t-cares. For example, hex 000007FF means to compare all 11
bits of incoming standard CAN frames. If the standard frame
comparator is NC_CAN_ARBID_NONE, NI-CAN ignores this mask,
because all standard frame reception is disabled in the CAN
Network Interface Object.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-12 © National Instruments Corporation

CAN Network Interface Object
(Continued)

NC_ATTR_CAN_COMP_XTD

Attribute ID NC_ATTR_CAN_COMP_XTD

Hex Encoding 80010003

Data Type NCTYPE_CAN_ARBID

Permissions Config

Description CAN arbitration ID to the extended frame comparator. This
comparator filters all incoming extended (29-bit) CAN frames
placed into the read queue. The NC_FL_CAN_ARBID_XTD bit must
be set for any value written to this attribute. For more information,
refer to the description of NCTYPE_CAN_ARBID in Chapter 1,
NI-CAN Host Data Types.

If you intend to use CAN Objects as the sole means of receiving
extended CAN frames from the network, you should disable all
extended frame reception in the CAN Network Interface Object by
setting this attribute to NC_CAN_ARBID_NONE (CFFFFFFF hex).
With this setting, the network interface is best able to filter out all
incoming extended CAN frames except those handled by the CAN
Objects.

NC_ATTR_CAN_MASK_XTD

Attribute ID NC_ATTR_CAN_MASK_XTD

Hex Encoding 80010004

Data Type NCTYPE_UINT32

Permissions Config

Description Bitmask used in conjunction with NC_ATTR_CAN_COMP_XTD for
filtration of incoming extended CAN frames. For each bit set in the
mask, NI-CAN checks the corresponding bit in the extended frame
comparator for a match. Bits in the mask that are clear are treated as
don’t-cares. For example, hex 1FFFFFFF means to compare all 29
bits of incoming extended CAN frames. If the extended frame
comparator is NC_CAN_ARBID_NONE, NI-CAN ignores this mask.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-13 NI-CAN Programmer Reference Manual for Win32

CAN Network Interface Object
(Continued)

Functions
This section provides specific notes about using NI-CAN functions with the CAN Network
Interface Object.

ncAction
NI-CAN propagates all actions on the CAN Network Interface Object up to all open CAN
Objects. Table 3-1 describes the actions supported by the CAN Network Interface Object.

Table 3-1. Actions Supported by the CAN Network Interface Object

Opcode Param Description

NC_OP_START N/A (ignored) Transitions network interface from stopped
(idle) state to started (running) state. If
network interface is already started, this
operation has no effect. When a network
interface is started, it is communicating on
network. When you execute NC_OP_START on
a stopped CAN Network Interface Object,
NI-CAN propagates it upward to all open
higher level CAN Objects. Thus, you can use it
to start all higher level network communication
simultaneously.

NC_OP_STOP N/A (ignored) Transitions network interface from started state
to stopped state. If network interface is already
stopped, this operation has no effect. When a
network interface is stopped, it is not
communicating on network. Much like
NC_OP_START, NC_OP_STOP on a running
CAN Network Interface Object is propagated
up to all open higher level CAN Objects.

NC_OP_RESET N/A (ignored) Resets network interface. Stops network
interface, then resets all attributes back to
default states. Resetting includes clearing all
entries from read and write queues.
NC_OP_RESET is propagated up to all open
higher level CAN Objects.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-14 © National Instruments Corporation

CAN Network Interface Object
(Continued)

ncRead
The host data type you use with ncRead is NCTYPE_CAN_FRAME_TIMED. For LabVIEW,
each field of NCTYPE_CAN_FRAME_TIMED is returned in a terminal of the NI-CAN Read
CAN Network Interface Object function (ncReadNet.vi). For C,
NCTYPE_CAN_FRAME_TIMED is a structure. Table 3-2 describes the fields of
NCTYPE_CAN_FRAME_TIMED.

Table 3-2. NCTYPE_CAN_FRAME_TIMED Field Names

Field Name Data Type Description

Timestamp NCTYPE_ABS_TIME When timestamping is enabled,
this field holds value of absolute
timer (NC_ATTR_ABS_TIME) when
frame was received. When
timestamping is disabled, this field
is zero.

ArbitrationId NCTYPE_CAN_ARBID CAN arbitration ID received with
frame.

IsRemote NCTYPE_BOOL Indicates whether frame is CAN
remote frame (NC_TRUE) or CAN
data frame (NC_FALSE). It is
always false for ncRead ,
indicating a CAN data frame. The
CAN Network Interface Object
cannot receive incoming CAN
remote frames.

DataLength NCTYPE_UINT8 Number of data bytes in frame.

Data Array of bytes
(NCTYPE_UINT8)

This array holds data bytes
(8 maximum).

When a CAN frame arrives from over the network, NI-CAN first checks it for handling by
an open CAN Object. If no CAN Object applies, NI-CAN filters the arbitration ID of the
frame using the appropriate comparator and mask. If the frame is acceptable, NI-CAN
places it into an available entry in the read queue of the CAN Network Interface Object.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-15 NI-CAN Programmer Reference Manual for Win32

CAN Network Interface Object
(Continued)

ncWrite
The host data type you use with ncWrite is NCTYPE_CAN_FRAME. For LabVIEW, each
field of NCTYPE_CAN_FRAME is provided in a terminal of the NI-CAN Write CAN Network
Interface Object function (ncWriteNet.vi). For C, NCTYPE_CAN_FRAME is a structure.
Table 3-3 describes the fields of NCTYPE_CAN_FRAME.

Table 3-3. NCTYPE_CAN_FRAME Field Names

Field Name Data Type Description

ArbitrationId NCTYPE_CAN_ARBID CAN arbitration ID to transmit with
frame.

IsRemote NCTYPE_BOOL Indicates whether frame is CAN
remote frame (NC_TRUE) or CAN
data frame (NC_FALSE).

DataLength NCTYPE_UINT8 When IsRemote is false, this field
specifies number of data bytes in
frame. When IsRemote is true, it
specifies desired number of data
bytes.

Data Array of bytes
(NCTYPE_UINT8)

When IsRemote is false, this array
holds data bytes (8 maximum).

Sporadic, recoverable errors on the CAN network interface are handled automatically by
the protocol, and are not reported as errors from NI-CAN. As such, after ncWrite returns
successfully, NI-CAN eventually transmits the frame on the CAN network unless the
NC_ERR_CAN_BUS_OFF warning occurs.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-16 © National Instruments Corporation

CAN Object

Object Name
CANx ::STDArbitration ID
CANx ::XTDArbitration ID

CANx is the name of a CAN Network Interface Object such as CAN0. The letters STD and
XTD indicate the class of the CAN Object, specifying whether it uses a standard (11-bit)
arbitration ID or an extended (29-bit) arbitration ID. You normally specify the actual
Arbitration ID of the CAN Object as a decimal number, but you can use hexadecimal
notation by including a “0x” at the beginning of the hexadecimal notation.

Encapsulates
CAN arbitration ID and its associated data

Description
When a network frame is transmitted on a CAN-based network, it always begins with the
arbitration ID. This arbitration ID is primarily used for collision resolution when more than
one frame is transmitted simultaneously, but often is also used as a simple mechanism to
identify data. The CAN arbitration ID, along with its associated data, is referred to as a
CAN Object.

The NI-CAN implementation of CAN provides high-level access to CAN Objects on an
individual basis. You can configure each CAN Object for different forms of background
access (such as periodic polling, receiving unsolicited CAN data frames, and so on). After
you open a CAN Object and configure it for communication, use the ncRead and ncWrite

functions to access the data of the CAN Object. The NI-CAN driver performs all other
details regarding the object.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-17 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

Attributes

NC_ATTR_BKD_TYPE

Attribute ID NC_ATTR_BKD_TYPE

Hex Encoding 8000000D

Data Type NCTYPE_BKD_TYPE

Permissions Config

Description Configures how NI-CAN transfers the data value over the network
(the type of connection). The attribute can have one of the following
values:

NC_BKD_TYPE_PEER2PEER (1)
Indicates a peer-to-peer connection. Although peer-to-peer
connections are generally preferred because they use less network
bandwidth, not all protocols and devices support them. For CAN, a
peer-to-peer connection means that one node transmits the data of a
CAN Object in a CAN data frame whenever it chooses, and one or
more devices are configured to recognize and receive that data.

NC_BKD_TYPE_REQUEST (2)
Indicates a request/response connection in which the NI-CAN driver
transmits a request (CAN remote frame) to acquire a response from a
remote device (CAN data frame). Because a CAN remote frame can
never include data itself, all CAN request/response connections are
polled.

NC_BKD_TYPE_RESPONSE (3)
Indicates a request/response connection in which the NI-CAN driver
transmits a response (CAN data frame) upon receiving a request
from a remote device (CAN remote frame).

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-18 © National Instruments Corporation

CAN Object
(Continued)

NC_ATTR_BKD_WHEN_USED

Attribute ID NC_ATTR_BKD_WHEN_USED

Hex Encoding 8000000E

Data Type NCTYPE_BKD_WHEN

Permissions Config

Description Configures when the CAN Object is used (when network data
transfer takes place). For configurations in which the CAN Object
originates frame transmission (requester or peer-to-peer writer), this
attribute specifies when a frame is transmitted. For configurations in
which the CAN object does not originate frame transmission
(response or peer-to-peer reader), this attribute specifies when
NI-CAN expects a frame to arrive from the network. This attribute
can have one of the following values:

NC_BKD_WHEN_UNSOLICITED (2)
Network data transfer is based on application-specific behavior,
either due to a call to ncWrite (when CAN object originates
transmission), or unsolicited reception of frames (when CAN object
does not originate transmission).

NC_BKD_WHEN_PERIODIC (1)
Network data transfer occurs periodically, at the rate specified in
NC_ATTR_BKD_PERIOD.

NC_ATTR_BKD_PERIOD

Attribute ID NC_ATTR_BKD_PERIOD

Hex Encoding 8000000F

Data Type NCTYPE_DURATION

Permissions Config

Description When you set NC_ATTR_BKD_WHEN_USED to
NC_BKD_WHEN_PERIODIC, this attribute specifies the time between
subsequent periodic activations.

When you set NC_ATTR_BKD_WHEN_USED to
NC_BKD_WHEN_UNSOLICITED, this attribute specifies a minimum
interval or watchdog timeout.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-19 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

NC_ATTR_BKD_READ_SIZE

Attribute ID NC_ATTR_BKD_READ_SIZE

Hex Encoding 8000000B

Data Type NCTYPE_UINT32

Permissions Config

Description NC_ATTR_BKD_READ_SIZE indicates the number of bytes of data
that you read from network frames. Because you cannot use a single
CAN Object to both read and write data, either
NC_ATTR_BKD_READ_SIZE or NC_ATTR_BKD_WRITE_SIZE must
always be zero. The size that indicates nonzero data indicates the
direction of data transfer.

To read or write CAN data frames with zero data bytes, you can use
the special value NC_BKD_CAN_ZERO_SIZE (8000 hex), with zero
for the other direction.

NC_ATTR_BKD_WRITE_SIZE

Attribute ID NC_ATTR_BKD_WRITE_SIZE

Hex Encoding 8000000C

Data Type NCTYPE_UINT32

Permissions Config

Description NC_ATTR_BKD_WRITE_SIZE indicates the number of bytes of data
that you write to network frames. Because you cannot use a single
CAN Object to both read and write data, either
NC_ATTR_BKD_READ_SIZE or NC_ATTR_BKD_WRITE_SIZE must
always be zero. The size that indicates nonzero data indicates the
direction of data transfer.

To read or write CAN data frames with zero data bytes, you can use
the special value NC_BKD_CAN_ZERO_SIZE (8000 hex), with zero
for the other direction.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-20 © National Instruments Corporation

CAN Object
(Continued)

NC_ATTR_BKD_CHANGES_ONLY

Attribute ID NC_ATTR_BKD_CHANGES_ONLY

Hex Encoding 80000015

Data Type NCTYPE_BOOL

Permissions Config

Description Specifies whether to queue all data values (NC_FALSE), or to queue
a data value only when it changes from the previous value
(NC_TRUE).

For configurations that receive data, if this attribute is set to
NC_FALSE, NI-CAN places data from all incoming CAN data frames
into the read queue. If this attribute is set to NC_TRUE, NI-CAN
places data from an incoming CAN data frame into the read queue
only if it differs from the previously received data.

For configurations that transmit data, if this attribute is set to
NC_FALSE, NI-CAN places all data supplied using ncWrite into the
write queue. If this attribute is set to NC_TRUE, NI-CAN places data
into the write queue only when it differs from the previously
supplied data. This process ensures that NI-CAN transmits only new
data onto the network.

This attribute has no effect on the usage of a watchdog timeout for
the CAN Object. For example, if this attribute is true and you also
specify a watchdog timeout, NI-CAN restarts the watchdog timeout
every time it receives a CAN data frame from the network,
regardless of whether the data differs from the previous value.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-21 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

NC_ATTR_BKD_CAN_RESPONSE

Attribute ID NC_ATTR_BKD_CAN_RESPONSE

Hex Encoding 80010006

Data Type NCTYPE_BOOL

Permissions Config

Description Specifies whether or not the CAN Object should automatically
respond with the previously transmitted CAN data frame when it
detects an incoming CAN remote frame. This attribute applies only
to peer-to-peer writers. When set to NC_FALSE, the CAN Object
transmits CAN data frames only as specified in
NC_ATTR_BKD_WHEN_USED, and ignores all incoming CAN remote
frames for its arbitration ID. When set to NC_TRUE, the CAN Object
responds to incoming CAN remote frames. CAN data frames
transmitted due to incoming CAN remote frames are independent of
any CAN data frames transmitted as a result of configured behavior.

If you know that a given peer-to-peer writer will not receive CAN
remote frames, you should set this attribute to NC_FALSE so that the
background task of the object can ignore such frames.

NI-CAN ignores this attribute for all readers, because these CAN
Objects receive CAN data frames only. NI-CAN also ignores this
attribute when NC_ATTR_BKD_TYPE is NC_BKD_TYPE_RESPONSE,
because that CAN Object must always respond to incoming CAN
remote frames.

NC_ATTR_STATE

Attribute ID NC_ATTR_STATE

Hex Encoding 80000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the CAN Object. In most cases, the
NC_ST_STOPPED, NC_ST_WARNING, and NC_ST_ERROR states are
merely reflected up from the underlying CAN Network Interface
Object.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-22 © National Instruments Corporation

CAN Object
(Continued)

NC_ATTR_STATUS

Attribute ID NC_ATTR_STATUS

Hex Encoding 8000000A

Data Type NCTYPE_STATUS

Permissions Get

Description Background status of the CAN Object. Unless the NC_ST_WARNING

or NC_ST_ERROR states are set in NC_ATTR_STATE, this attribute is
always NC_SUCCESS. When you read an error or warning from this
attribute, NI-CAN clears the appropriate state, and the background
status is set back to NC_SUCCESS. For communication errors such
as NC_ERR_CAN_BUS_OFF, this background status is the same as the
background status of the underlying CAN Network Interface Object.
If a background error occurs, you can read it from this attribute, or
obtain it from the next call to ncRead or ncWrite .

NC_ATTR_READ_Q_LEN

Attribute ID NC_ATTR_READ_Q_LEN

Hex Encoding 80000013

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the read queue. For more
information, refer to the description of the ncRead function in
Chapter 2, NI-CAN Functions.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-23 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

NC_ATTR_WRITE_Q_LEN

Attribute ID NC_ATTR_WRITE_Q_LEN

Hex Encoding 80000014

Data Type NCTYPE_UINT32

Permissions Config

Description Length (maximum number of entries) for the write queue. For more
information, refer to the description of the ncWrite function in
Chapter 2, NI-CAN Functions.

NC_ATTR_TIMESTAMPING

Attribute ID NC_ATTR_TIMESTAMPING

Hex Encoding 80000010

Data Type NCTYPE_BOOL

Permissions Config

Description Indicates whether or not NI-CAN calculates a timestamp for every
entry it places into the read queue. The timestamp is taken from the
current value of the CAN Network Interface Object’s
NC_ATTR_ABS_TIME attribute when NI-CAN places an entry is
placed into the read queue. When you disable timestamping, the
host data type for ncRead still contains the timestamp field (for
consistency), but the timestamp is always returned as zero.

NC_ATTR_READ_PENDING

Attribute ID NC_ATTR_READ_PENDING

Hex Encoding 80000011

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the read queue. If
NC_ATTR_READ_PENDING is zero, the NC_ST_READ_AVAIL state is
clear.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-24 © National Instruments Corporation

CAN Object
(Continued)

NC_ATTR_WRITE_PENDING

Attribute ID NC_ATTR_WRITE_PENDING

Hex Encoding 80000012

Data Type NCTYPE_UINT32

Permissions Get

Description Indicates the number of pending entries in the write queue. If
NC_ST_WRITE_PENDING is zero, the NC_ST_WRITE_SUCCESS state
is set (after NI-CAN successfully transmits the final frame).

Functions

ncAction
The ncAction function is not supported by CAN Objects. To start communication for a
stopped CAN Object, you must call ncAction to start its lower-level CAN Network
Interface Object. NI-CAN propagates all actions on the CAN Network Interface Object up
to all open CAN Objects.

ncRead
The host data type you use with ncRead is NCTYPE_CAN_DATA_TIMED. For LabVIEW,
each field of NCTYPE_CAN_DATA_TIMED is returned in a terminal of the NI-CAN Read
CAN Object function (ncReadObj.vi). For C, NCTYPE_CAN_DATA_TIMED is a structure.
Table 3-4 describes the fields of NCTYPE_CAN_DATA_TIMED.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-25 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

Table 3-4. NCTYPE_CAN_DATA_TIMED Field Names

Field Name Data Type Description

Timestamp NCTYPE_ABS_TIME When timestamping is enabled,
this field holds value of absolute
timer (NC_ATTR_ABS_TIME) when
CAN data frame was received.
When timestamping is disabled,
this field is zero.

Data Array of bytes
(NCTYPE_UINT8)

Data bytes for CAN Object.
Length of Data is preconfigured
using NC_ATTR_BKD_READ_SIZE

attribute.

ncWrite
The host data type you use with ncWrite is NCTYPE_CAN_DATA. For LabVIEW, each field
of NCTYPE_CAN_DATA is provided in a terminal of the NI-CAN Write CAN Object
function (ncWriteObj.vi). For C, NCTYPE_CAN_DATA is a structure.

For CAN Objects configured to transmit a CAN remote frame when you call ncWrite

(Receive Value with Call), you do not provide data to ncWrite . For C, you set DataSize

to zero. For LabVIEW, you leave the Data terminal of ncWriteObj.vi unconnected.
For more information on Receive Value with Call, refer to the next section, Supported
Background Configurations.

Table 3-5 describes the field of NCTYPE_CAN_DATA.

Table 3-5. NCTYPE_CAN_DATA Field Name

Field Name Data Type Description

Data Array of bytes
(NCTYPE_UINT8)

Data bytes for CAN Object. Length
of Data is preconfigured using
NC_ATTR_BKD_WRITE_SIZE

attribute.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-26 © National Instruments Corporation

CAN Object
(Continued)

Supported Background Configurations
The following sections describe the allowable configurations of CAN Objects.

Receive Value Unsolicited
Use this configuration to receive unsolicited CAN data frames from a remote device.

If the CAN data frames are expected periodically, you can use a watchdog timeout by
setting NC_ATTR_BKD_PERIOD to the desired number of milliseconds. Then, when the
CAN Object detects an incoming CAN data frame, it restarts the watchdog timeout. If the
watchdog timeout expires before the next incoming CAN data frame is received for the
CAN Object, NI-CAN reports a NC_ERR_TIMEOUT error. The watchdog timeout is used to
verify that the remote node still exists and is transmitting data as expected.

Table 3-6 shows the attribute values you must set to use the Receive Value Unsolicited
configuration.

Table 3-6. Attribute Settings for Receive Value Unsolicited

Attribute ID Attribute Value

NC_ATTR_BKD_TYPE NC_BKD_TYPE_PEER2PEER

NC_ATTR_BKD_WHEN_USED NC_BKD_WHEN_UNSOLICITED

NC_ATTR_BKD_PERIOD Watchdog Timeout or 0

NC_ATTR_BKD_READ_SIZE Nonzero data size

NC_ATTR_BKD_WRITE_SIZE 0

Receive Value Periodically
Use this configuration to poll for data from a remote device periodically. Every period, the
background task for the object transmits a CAN remote frame, and NI-CAN places the
resulting CAN data frame response into the read queue.

Table 3-7 shows the attribute values you must set to use the Receive Value Periodically
configuration.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-27 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

Table 3-7. Attribute Settings for Receive Value Periodically

Attribute ID Attribute Value

NC_ATTR_BKD_TYPE NC_BKD_TYPE_REQUEST

NC_ATTR_BKD_WHEN_USED NC_BKD_WHEN_PERIODIC

NC_ATTR_BKD_PERIOD Desired Period

NC_ATTR_BKD_READ_SIZE Nonzero data size

NC_ATTR_BKD_WRITE_SIZE 0

Receive Value with Call
Use this configuration when the remote device does not transmit its data until it is polled
using a CAN remote frame. You must call ncWrite with DataSize zero to transmit a
CAN remote frame. NI-CAN places the resulting CAN data frame response into the read
queue.

If you want to specify the minimum amount of time between subsequent transmission of
CAN remote frames, you can specify a minimum interval by setting
NC_ATTR_BKD_PERIOD to the desired number of milliseconds. You configure the
minimum interval as a promise to other nodes on the network that the object will not
transmit its CAN frames with needless frequency, thus precluding transfer by lower priority
CAN frames. You can use a write queue in conjunction with the minimum intervals to
guarantee that the desired number of frames is transmitted on the network.

Table 3-8 shows the attribute values you must set to use the Receive Value with Call
configuration.

Table 3-8. Attribute Settings for Receive Value with Call

Attribute ID Attribute Value

NC_ATTR_BKD_TYPE NC_BKD_TYPE_REQUEST

NC_ATTR_BKD_WHEN_USED NC_BKD_WHEN_UNSOLICITED

NC_ATTR_BKD_PERIOD Minimum Interval or 0

NC_ATTR_BKD_READ_SIZE Nonzero data size

NC_ATTR_BKD_WRITE_SIZE 0

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-28 © National Instruments Corporation

CAN Object
(Continued)

Transmit Value Periodically
Use this configuration to transmit a CAN data frame to a remote device periodically. The
periodic transmissions are handled by the background task for the object.

When NI-CAN transmits the last entry of the write queue, that entry is used every period
until you provide a new entry using ncWrite . With this behavior, every entry is
guaranteed to be transmitted at least once, and the object always has data available for
transmission. If the write queue is empty when communication starts, the first periodic
transmission does not occur until you provide a valid data value using ncWrite .

Table 3-9 shows the attribute values you must set to use the Transmit Value Periodically
configuration.

Table 3-9. Attribute Settings for Transmit Value Periodically

Attribute ID Attribute Value

NC_ATTR_BKD_TYPE NC_BKD_TYPE_PEER2PEER

NC_ATTR_BKD_WHEN_USED NC_BKD_WHEN_PERIODIC

NC_ATTR_BKD_PERIOD Desired period

NC_ATTR_BKD_READ_SIZE 0

NC_ATTR_BKD_WRITE_SIZE Nonzero data size

Transmit Value by Response Only
Use this configuration to transmit CAN data frames only in response to an incoming CAN
remote frame. When you call ncWrite , the data is placed in the write queue, and remains
there until a CAN remote frame is received.

If the CAN remote frames are expected periodically, you can specify a watchdog timeout
by setting NC_ATTR_BKD_PERIOD to the desired number of milliseconds (see Receive
Value Unsolicited, earlier in this chapter).

Table 3-10 shows the attribute values you must set to use the Transmit Value by Response
Only configuration.

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-29 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

Table 3-10. Attribute Settings for Transmit Value by Response Only

Attribute ID Attribute Value

NC_ATTR_BKD_TYPE NC_BKD_TYPE_RESPONSE

NC_ATTR_BKD_WHEN_USED NC_BKD_WHEN_UNSOLICITED

NC_ATTR_BKD_PERIOD Watchdog timeout or 0

NC_ATTR_BKD_READ_SIZE 0

NC_ATTR_BKD_WRITE_SIZE Nonzero data size

Transmit Value with Call
Use this configuration to transmit a CAN data frame as soon as possible after ncWrite is
called.

If you want to specify the minimum amount of time between subsequent transmission of
CAN data frames, you can specify a minimum interval by setting NC_ATTR_BKD_PERIOD

to the desired number of milliseconds (see Receive Value with Call, earlier in this chapter).

Table 3-11 shows the attribute values you must set to use the Transmit Value with Call
configuration.

Table 3-11. Attribute Settings for Transmit Value with Call

Attribute ID Attribute Value

NC_ATTR_BKD_TYPE NC_BKD_TYPE_PEER2PEER

NC_ATTR_BKD_WHEN_USED NC_BKD_WHEN_UNSOLICITED

NC_ATTR_BKD_PERIOD Minimum Interval or 0

NC_ATTR_BKD_READ_SIZE 0

NC_ATTR_BKD_WRITE_SIZE Nonzero data size

Examples of Different Background Configurations
The following figures demonstrate how you can use the configuration attributes listed
earlier in this section for actual network data transfer. Each figure shows two separate
NI-CAN applications that are physically connected across a CAN network.

Chapter 3 NI-CAN Objects

NI-CAN Programmer Reference Manual for Win32 3-30 © National Instruments Corporation

CAN Object
(Continued)

Figure 3-1 shows a CAN Object that periodically transmits data to another CAN Object.
The receiving CAN Object can queue five data values at most.

Your
Application

Periodic Timer
(Obtains Data to

Transmit Every Period)

Receive Value Unsolicited
NC_ATTR_READ_Q_LEN=5

NC_ATTR_BKD_CHANGES_ONLY=NC_FALSE

Read Queue

Transmit Value Periodically
NC_ATTR_WRITE_Q_LEN=0

NC_ATTR_BKD_CHANGES_ONLY=NC_FALSE
NC_ATTR_BKD_CAN_RESPOND=NC_FALSE

ncWritencRead

NI-CAN Driver NI-CAN DriverCAN
Network

Your
Application

Figure 3-1. Example of Periodic Transmission

Figure 3-2 shows a CAN Object that polls data from another CAN Object. NI-CAN
transmits the CAN remote frame when you call ncWrite , and timestamps the received
data.

Response Uses
Most Recent
Write Data

Receive Value With Call
NC_ATTR_READ_Q_LEN=0

NC_ATTR_TIMESTAMPNG=NC_TRUE

Transmit Value by Response Only
NC_ATTR_WRITE_Q_LEN=0

Absolute
Time

NI-CAN Driver NI-CAN DriverCAN
Network

ncWrite

ncRead

ncWrite

Your
Application

Your
Application

Figure 3-2. Example of Polling Remote Data Using ncWrite

Chapter 3 NI-CAN Objects

© National Instruments Corporation 3-31 NI-CAN Programmer Reference Manual for Win32

CAN Object
(Continued)

Figure 3-3 shows a CAN Object that polls data from another CAN Object. NI-CAN
transmits the remote frame periodically, and only places changed data into the read queue.

Response Uses
Most Recent
Write Data

Receive Value Periodically
NC_ATTR_READ_Q_LEN=3

NC_ATTR_BKD_CHANGES_ONLY=NC_TRUE

Transmit Value by Response Only
NC_ATTR_WRITE_Q_LEN=0

Check For
Different Value

Periodic Timer

NI-CAN Driver NI-CAN DriverCAN
Network

ncRead ncWrite

Your
Application

Your
Application

Figure 3-3. Example of Periodic Polling of Remote Data

© National Instruments Corporation A-1 NI-CAN Programmer Reference Manual for Win32

NI-CAN Object States
A

Appendix

This appendix describes the NI-CAN object states.

Every object in NI-CAN contains a state attribute (NC_ATTR_STATE) with the following
format. The bits marked as 0 are reserved for future use.

31-6 5 4 3 2 1 0

0 WARNING ERROR 0 STOPPED WRITE
SUCCESS

READ
AVAIL

Figure A-1. State Format

You can detect the object states using one of the following schemes:

• Call ncGetAttribute to get the NC_ATTR_STATE attribute.

• Call ncWaitForState to wait for one or more states to occur.

• Use ncCreateNotification to register a callback for one or more states.

Table A-1 describes each object state.

Table A-1. NI-CAN Object States

Constant
Bitmask

(Hex) Description

NC_ST_READ_AVAIL 00000001

(Bit 0)

Indicates that new data is available to be read using
ncRead . Set when data is received from network,
and cleared when all available data is read.

NC_ST_WRITE_SUCCESS 00000002

(Bit 1)

Indicates that all data provided using ncWrite has
been successfully transmitted onto network. Set when
last transmission is successful, and cleared by any call
to ncWrite .

Appendix A NI-CAN Object States

NI-CAN Programmer Reference Manual for Win32 A-2 © National Instruments Corporation

Table A-1. NI-CAN Object States (Continued)

Constant
Bitmask

(Hex) Description

NC_ST_STOPPED 00000004

(Bit 2)

Indicates that object is in stopped state (not
communicating on network). This state can occur as
result of calling ncAction with NC_OP_STOP, or due
to serious communication error, such as CAN bus off,
which causes object to stop. If this state is clear, the
object is in its normal running state.

NC_ST_ERROR 00000010

(Bit 4)

Indicates that an error status has occurred in
background. Set when error occurs, and cleared when
you obtain status value. Status value is obtained by
getting NC_ATTR_STATUS attribute, or on next call to
ncRead or ncWrite . This state indicates background
problems such as communication errors, and is not set
for problems that are associated with individual
function calls (such as an invalid parameter).

NC_ST_WARNING 00000020

(Bit 5)

Indicates that warning status has occurred in
background. Set when warning occurs, and cleared
when you obtain status value. Status value is obtained
by getting NC_ATTR_STATUS attribute, or on next call
to ncRead or ncWrite . This state indicates
background problems such as communication
warnings, and is not set for problems that are
associated with individual function calls (such as an
invalid parameter).

© National Instruments Corporation B-1 NI-CAN Programmer Reference Manual for Win32

Status Codes and Qualifiers
B

Appendix

This appendix describes the NI-CAN status codes and the qualifiers for each code.

Each NI-CAN function returns a value that indicates the status of the function call. Your
application should check this status after each NI-CAN function call. The following
sections describe the NI-CAN status.

NI-CAN Status Format
To provide the maximum amount of information, the status returned by NI-CAN functions
is encoded as a signed 32-bit integer. The format of this integer is shown in Figure B-1.

31 30 29–16 15–0

Error Warning Qualifier Code

Figure B-1. Status Format

Error/Warning Indicators (Severity)
The error and warning bits ensure that all NI-CAN errors generate a negative status, and all
NI-CAN warnings generate a positive status. The error bit is set when a function does not
perform the expected behavior, resulting in a negative status. The warning bit is set when
the function performed as expected, but a condition exists that may require your attention.
If no error or warning occurs, the entire status is set to zero to indicate success. Table B-1
summarizes the behavior of NI-CAN status.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual for Win32 B-2 © National Instruments Corporation

Table B-1. Determining Severity of Status

Status Result

Negative Error. Function did not perform expected behavior.

Zero Success. Function completed successfully.

Positive Warning. Function performed as expected, but a condition
arose that may require your attention.

Code
The code bits indicate the primary status code used for warning or errors.

Qualifier
The qualifier bits hold a qualifier for the warning or error code. It is specific to individual
values for the code field, and provides additional information useful for detailed
debugging. For example, if the status code indicates an invalid function parameter, the
qualifier holds a number which indicates the exact parameter that is invalid (one for the
first parameter, two for the second, and so on). If no qualifier exists, this field has the
value NC_QUAL_NONE (0).

NI-CAN Status Codes and Qualifiers
Table B-2 summarizes each NI-CAN status code (lower 16 bits of status). After the table, a
separate section for each status code lists the valid encodings for the entire status, including
the associated qualifier and severity.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-3 NI-CAN Programmer Reference Manual for Win32

Table B-2. Summary of Status Codes

Code
Hex Encoding of

Code (Lower 16 Bits) Description

NC_SUCCESS 0000 Success (no warning or error)

NC_ERR_TIMEOUT 0001 Timeout Expired

NC_ERR_DRIVER 0002 Implementation-specific error in NI-CAN
driver

NC_ERR_BAD_NAME 0003 Invalid or unrecognized object name

NC_ERR_BAD_PARAM 0004 Invalid function parameter

NC_ERR_BAD_VALUE 0005 Invalid attribute value

NC_ERR_ALREADY_OPEN 0006 Object already opened by another application

NC_ERR_NOT_STOPPED 0007 Attempted to set a configuration attribute
while object was running

NC_ERR_OVERFLOW 0008 Queue overflow

NC_ERR_OLD_DATA 0009 Data returned from ncRead matches data
returned from previous call to ncRead

NC_ERR_CAN_BUS_OFF 0101 Error or warning indicating large number of
CAN communication errors

NC_SUCCESS (0000 Hex)
Success (no warning or error).

Hex Status Encoding 00000000

Qualifier 0

Severity Success

Description The qualifier is always zero.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual for Win32 B-4 © National Instruments Corporation

NC_ERR_TIMEOUT (0001 Hex)
A timeout expired in the NI-CAN driver. The qualifier indicates the type of timeout that
expired.

Hex Status Encoding 80000001

Qualifier NC_QUAL_TIMO_FUNCTION (0)

Severity Error

Description The timeout of ncWaitForState or ncCreateNotification

expired before any desired states occurred.

Solutions • Increase the value of the Timeout parameter to wait longer.

• If the timeout occurs while waiting for NC_ST_READ_AVAIL or
NC_ST_WRITE_SUCCESS, verify your CAN cable connections,
and ensure that remote devices are operating properly.

• If you wait only for a background error or warning, the timeout
is often the expected behavior, and you can ignore it.

Hex Status Encoding 80010001

Qualifier NC_QUAL_TIMO_WATCHDOG (1)

Severity Error

Description The watchdog timeout for a CAN Object expired, indicating that
data was not received at the rate expected. This error occurs in the
background and is returned by ncRead and ncWrite .

Solutions • Verify your CAN cable connections, and ensure that remote
devices are operating properly.

• If the remote device takes longer than expected to transmit data,
you can increase the period specified in the
NC_ATTR_BKD_PERIOD attribute.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-5 NI-CAN Programmer Reference Manual for Win32

NC_ERR_DRIVER (0002 Hex)
An implementation-specific error has occurred in the NI-CAN driver, such as the inability
to allocate needed memory. This error should never occur under normal circumstances.

Hex Status Encoding 8xxx0002, 9xxx0002, Axxx0002, and Bxxx0002

Qualifier Varies

Severity Error

Description The qualifier (bits 16-29) holds a value that is specific to the
NI-CAN driver implementation.

Solution Write down the status value, and contact National Instruments for
technical support.

NC_ERR_BAD_NAME (0003 Hex)
The ObjName parameter of ncOpenObject or ncConfig contains an invalid or
unrecognized name.

Hex Status Encoding 80000003

Qualifier 0

Severity Error

Description There is a basic syntax error such as an invalid character or a single
colon instead of a double colon.

Solutions • Verify that the object name does not contain invalid characters,
and that you use the syntax specified in ncOpenObject .

• If you are opening a user-defined alias, use the NI-CAN
Configuration utility to verify that the alias is defined in the list
of CAN Objects.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual for Win32 B-6 © National Instruments Corporation

Hex Status Encoding 80010003

Qualifier 1

Severity Error

Description The CAN Network Interface Object name is invalid or unknown.

Solution Use the NI-CAN Configuration utility to verify that the CAN
Network Interface Object is assigned a physical CAN port. The
NI-CAN Diagnostic utility also provides a list of valid CAN
Network Interface Object names.

Hex Status Encoding 80020003

Qualifier 1

Severity Error

Description The CAN Object name is invalid or unknown.

Solution Verify that you use the syntax specified in the CAN Object section of
Chapter 3, NI-CAN Objects.

NC_ERR_BAD_PARAM (0004 Hex)
A function parameter is invalid.

Hex Status Encoding 800x0004

Qualifier Varies

Severity Error

Description The qualifier holds the position of the invalid parameter in the C
function prototype. For example, if the DataSize parameter of
ncRead is invalid, the qualifier is two (status 80020004).

Solution Check the qualifier, then read the function description in Chapter 2,
NI-CAN Functions, to verify that you provide a valid value for the
specified parameter.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-7 NI-CAN Programmer Reference Manual for Win32

NC_ERR_BAD_VALUE (0005 Hex)
The attribute value for the specified attribute ID is invalid. For example, if you call
ncSetAttribute with the AttrId NC_ATTR_BAUD_RATE, and AttrPtr points to an
invalid baud rate such as 20005, NC_ERR_BAD_VALUE is returned.

Hex Status Encoding 80000005

Qualifier 0 (for ncSetAttribute)

Severity Error

Description For ncSetAttribute , the qualifier is always zero.

Solution Check the description of the attribute in Chapter 3, NI-CAN Objects,
and verify that the value you pass is valid.

Hex Status Encoding 8xxx0005

Qualifier Varies (for ncAction and ncConfig)

Severity Error

Description For ncAction and ncConfig , this error indicates that although
each configuration attribute holds a valid value, the combination of
values is invalid. For example, if a CAN Object is configured as
Transmit Value Periodically, the period attribute must be nonzero.
For this error, the qualifier holds the low order bits of the AttrId of
one of the invalid attributes.

Solution Using the attribute ID provided in the qualifier, check the
description of the attribute in Chapter 3, NI-CAN Objects, and verify
that the value you set works with the other attribute values.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual for Win32 B-8 © National Instruments Corporation

NC_ERR_ALREADY_OPEN (0006 Hex)
The object has already been opened by another application. If one application opens an
object, no other application can open or configure that object until the object is closed.

Hex Status Encoding 80000006

Qualifier 0

Severity Error

Description The qualifier is always zero.

Solutions • If you have two or more applications that open the same object,
run only one application at a time.

• If two or more applications need to share an object, you can
alternate access by closing the object in one application, then
opening the object in another.

• Before exiting your application, verify that you call
ncCloseObject for every object opened. For LabVIEW, you
should implement a control on your front panel to stop the
program and close all objects. You should not use the
LabVIEW Stop button to stop execution, because doing so
often prevents proper use of ncCloseObject .

NC_ERR_NOT_STOPPED (0007 Hex)
You attempted to set a configuration attribute for an object while the object was running.
You can change attributes with Config permissions only when the object is stopped (not
communicating).

Hex Status Encoding 80000007

Qualifier 0

Severity Error

Description The qualifier is always zero.

Solutions • Configure the object prior to opening it, either within the
NI-CAN Configuration utility, or by using ncConfig .

• Use ncAction to stop and start communication as needed so
that you can update configuration attributes.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-9 NI-CAN Programmer Reference Manual for Win32

NC_ERR_OVERFLOW (0008 Hex)
There is a queue overflow.

Hex Status Encoding 80000008

Qualifier NC_QUAL_OVFL_WRITE

Severity Error

Description There is a write queue overflow. This error occurs when you call
ncWrite for a full write queue. It occurs only when the length of
the write queue is greater than zero.

Solutions • Increase the length of the write queue using the
NC_ATTR_WRITE_Q_LEN attribute.

• Prior to calling ncWrite , check NC_ATTR_WRITE_PENDING to
verify that it is less than the write queue length.

• If you merely want the most recent data to be transmitted, such
as for periodic transmission, set NC_ATTR_WRITE_Q_LEN to
zero.

• Wait for the NC_ST_WRITE_SUCCESS state before calling
ncWrite to queue more data.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual for Win32 B-10 © National Instruments Corporation

Hex Status Encoding 80010008

Qualifier NC_QUAL_OVFL_READ

Severity Error

Description There is a read queue overflow. This error occurs when new data is
received from the network for a full read queue, and NI-CAN
discards it. The error occurs only when the length of the read queue
is greater than zero. This error occurs in the background, and is
returned by ncRead and ncWrite .

Solutions • Increase the length of the read queue using the
NC_ATTR_READ_Q_LEN attribute.

• Call ncRead more often in your application. One way to do this
is to create a notification for NC_ST_READ_AVAIL using
ncCreateNotification , so that you can read data as soon as
it becomes available.

• If you merely want the most recent data from ncRead , set
NC_ATTR_READ_Q_LEN to zero.

• Check NC_ATTR_READ_PENDING for a given threshold prior to
calling ncRead .

Hex Status Encoding 80020008

Qualifier NC_QUAL_OVFL_CHIP

Severity Error

Description There is an overflow in the CAN communications controller chip.
This error occurs in the background and is returned by ncRead and
ncWrite .

Solution Disable timestamping by setting the NC_ATTR_TIMESTAMPING

attribute to NC_FALSE.

NC_ERR_OLD_DATA (0009 Hex)
The data returned from ncRead matches the data returned from the previous call to
ncRead . Because the old data is returned successfully, this status code has a warning
severity, not error.

Appendix B Status Codes and Qualifiers

© National Instruments Corporation B-11 NI-CAN Programmer Reference Manual for Win32

Hex Status Encoding 40000009

Qualifier 0

Severity Warning

Description The qualifier is always zero.

Solutions • If you merely want to read the most recent data, ignore this
warning.

• Wait for the NC_ST_READ_AVAIL state before calling ncRead .

NC_ERR_CAN_BUS_OFF (0101 Hex)
This is an error or warning that can indicate many different CAN communication errors.
When the transmit or receive error counter of the CAN communications controller chip
increments above 96, a warning occurs. When the transmit error counter increments above
255 (bus off), an error occurs and the network interface is stopped. In both cases the
qualifier is set to the most recent detected communication error. This warning/error occurs
in the background, and is returned by ncRead and ncWrite . For more information, refer
to the CAN Network Interface Object section of Chapter 3, NI-CAN Objects.

The solutions for all of the qualifiers of the NC_ERR_CAN_BUS_OFF error follow the
descriptions.

Hex Status Encoding 40010101 and 80010101

Qualifier NC_QUAL_CAN_STUFF

Severity Varies

Description A stuff error has occurred (more than five equal bits in the frame).

Hex Status Encoding 40020101 and 80020101

Qualifier NC_QUAL_CAN_FORM

Severity Varies

Description The frame format is wrong.

Appendix B Status Codes and Qualifiers

NI-CAN Programmer Reference Manual for Win32 B-12 © National Instruments Corporation

Hex Status Encoding 40030101 and 80030101

Qualifier NC_QUAL_CAN_ACK

Severity Varies

Description The frame has not been acknowledged.

Hex Status Encoding 40040101 and 80040101

Qualifier NC_QUAL_CAN_BIT1

Severity Varies

Description One was transmitted but zero was detected.

Hex Status Encoding 40050101 and 80050101

Qualifier NC_QUAL_CAN_BIT0

Severity Varies

Description Zero was transmitted but one was detected.

Hex Status Encoding 40060101 and 80060101

Qualifier NC_QUAL_CAN_CRC

Severity Varies

Description The CRC checksum is invalid.

Solutions
The following solutions apply to all of the qualifiers for the NC_ERR_CAN_BUS_OFF error.

• CAN communication errors are often caused by defective cabling. Verify that your
connector, cables, and devices are functioning properly.

• If you attempt to transmit a CAN frame without another CAN device connected, or
with the bus powered off, the NC_ERR_CAN_BUS_OFF warning occurs. Connect your
other CAN devices prior to attempting communication.

© National Instruments Corporation C-1 NI-CAN Programmer Reference Manual for Win32

Customer Communication
C

Appendix

For your convenience, this appendix contains forms to help you gather the information necessary to
help us solve technical problems you might have as well as a form you can use to comment on the
product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S. and
Canada, applications engineers are available Monday through Friday from 8:00 a.m. to 6:00 p.m.
(central time). In other countries, contact the nearest branch office. You may fax questions to us at
any time.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions on
how to use the bulletin board and FTP services and for BBS automated information, call
(512) 795-6990. You can access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
wide range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
(512) 418-1111.

E-Mail Support (currently U.S. only)
You can submit technical support questions to the applications engineering team through e-mail at
the Internet address listed below. Remember to include your name, address, and phone number so
we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 527 2321 09 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Title ___

Company ___

Address __

Fax (____) _________________________ Phone (___) ___________________________

Computer brand ___________________ Model _____________ Processor ________________

Operating system (include version number) __

Clock Speed _________ MHz RAM __________ MB Display adapter________________

Mouse _____yes ____ no Other adapters installed _____________________________

Hard disk capacity ________ MB Brand ___

Instruments used ___

National Instruments hardware product model _____________________ Revision ___________

Configuration ___

National Instruments software product ____________________________ Version ___________

Configuration ___

The problem is __

List any error messages ___

The following steps will reproduce the problem ___

 Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-CANTM Programmer Reference Manual for Win32

Edition Date: November 1996

Part Number: 321369A-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

Thank you for your help.

Name __

Title ___

Company __

Address ___

__

Phone (____) ___

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 NI-CAN Programmer Reference Manual for Win32

Glossary

Prefix Meaning Value

n- nano- 10-9

m- milli- 10-3

k- kilo- 103

M- mega- 106

A

action See method.

actuator A device that uses electrical, mechanical, or other signals to change the
value of an external, real-world variable. In the context of device
networks, actuators are devices that receive their primary data value from
over the network; examples include valves and motor starters. Also
known as final control element.

Application A collection of functions used by a user application to access hardware.
Programming Within NI-CAN, you use API functions to make calls into the NI-CAN
Interface (API) driver.

arbitration ID An 11- or 29-bit ID transmitted as the first field of a CAN frame. The
arbitration ID determines the priority of the frame, and is normally used
to identify the data transmitted in the frame.

attribute The externally visible qualities of an object; for example, an instance
Mary of class Human could have the attributes Sex and Age, with the
values Female and 31. Also known as property.

Glossary

NI-CAN Programmer Reference Manual for Win32 G-2 © National Instruments Corporation

B

b Bits.

bus off A CAN node goes into the bus off state when its transmit error counter
increments above 255. The node does not participate in network traffic,
because it assumes that a defect exists that must be corrected.

C

CAN Controller Area Network.

CAN data frame Frame used to transmit the actual data of a CAN Object. The RTR bit is
clear, and the data length indicates the number of data bytes in the frame.

CAN frame In addition to fields used for error detection/correction, a CAN frame
consists of an arbitration ID, the RTR bit, a four-bit data length, and zero
to eight bytes of data.

CAN Network Within NI-CAN, an object that encapsulates a CAN network interface
Interface Object on the host computer.

CAN Object Data item in a CAN network that is associated with a specific arbitration
ID; within NI-CAN, an object that encapsulates access to such a data
item.

CAN remote frame Frame used to request data for a CAN Object from a remote node; the
RTR bit is set, and the data length indicates the amount of data desired
(but no data bytes are included).

class A set of objects that share a common structure and a common behavior.

connection An association between two or more nodes on a network that describes
when and how data is transferred.

controller A device that receives data from sensors and sends data to actuators in
order to hold one or more external, real-world variables at a certain level
or condition. A thermostat is a simple example of a controller.

D

device See node.

Glossary

© National Instruments Corporation G-3 NI-CAN Programmer Reference Manual for Win32

device network Multi-drop digital communication network for sensors, actuators, and
controllers.

DLL Dynamic link library.

DMA Direct memory access.

E

error active A CAN node is in error active state when both the receive and transmit
error counters are below 128.

error counters Every CAN node keeps a count of how many receive and transmit errors
have occurred. The rules for how these counters are incremented and
decremented are defined by the CAN protocol specification.

error passive A CAN node is in error passive state when one or both of its error
counters increment above 127. This state is a warning that a
communication problem exists, but the node is still participating in
network traffic.

extended arbitration ID A 29-bit arbitration ID. Frames that use extended IDs are often referred
to as CAN 2.0 Part B (the specification that defines them).

F

FCC Federal Communications Commission.

frame A unit of information transferred across a network from one node to
another; the protocol defines the meaning of the bit fields within a frame.
Also known as packet.

H

hex Hexadecimal.

Hz Hertz.

Glossary

NI-CAN Programmer Reference Manual for Win32 G-4 © National Instruments Corporation

I

instance An abstraction of a specific real-world thing; for example, Mary is an
instance of the class Human. Also known as object.

ISO International Standards Organization.

K

KB Kilobytes of memory.

L

local Within NI-CAN, anything that exists on the same host (personal
computer) as the NI-CAN driver.

M

MB Megabytes of memory.

method An action performed on an instance to affect its behavior; the externally
visible code of an object. Within NI-CAN, you use NI-CAN functions to
execute methods for objects. Also known as service, operation, and
action.

minimum interval For a given connection, the minimum amount of time between
subsequent attempts to transmit frames on the connection. Some
protocols use minimum intervals to guarantee a certain level of overall
network performance.

multi-drop A physical connection in which multiple devices communicate with one
another along a single cable.

N

network interface A node's physical connection onto a network.

Glossary

© National Instruments Corporation G-5 NI-CAN Programmer Reference Manual for Win32

NI-CAN driver Device driver and/or firmware that implement all the specifics of a CAN
network interface. Within NI-CAN, this software implements the CAN
Network Interface Object as well as all objects above it in the object
hierarchy.

node A physical assembly, linked to a communication line (cable), capable of
communicating across the network according to a protocol specification.
Also known as device.

notification Within NI-CAN, an operating system mechanism that the NI-CAN driver
uses to communicate events to your application. You can think of a
notification of as an API function, but in the opposite direction.

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes,
and methods are used to hide all of the details of a software entity that do
not contribute to its essential characteristics.

P

peer-to-peer Network connection in which data is transmitted from the source to its
destination(s) without need for an explicit request. Although data
transfer is generally unidirectional, the protocol often uses low level
acknowledgments and error detection to ensure successful delivery.

periodic Connections that transfer data on the network at a specific rate.

polled Request/response connection in which a request for data is sent to a
device, and the device sends back a response with the desired value.

protocol A formal set of conventions or rules for the exchange of information
among nodes of a given network.

R

RAM Random-access memory.

Glossary

NI-CAN Programmer Reference Manual for Win32 G-6 © National Instruments Corporation

remote Within NI-CAN, anything that exists in another node of the device
network (not on the same host as the NI-CAN driver).

Remote Transmission This bit follows the arbitration ID in a frame, and indicates whether the
Request (RTR) bit frame is the actual data of the CAN Object (CAN data frame), or whether

the frame is a request for the data (CAN remote frame).

request/response Network connection in which a request is transmitted to one or more
destination nodes, and those nodes send a response back to the requesting
node. In industrial applications, the responding (slave) device is usually
a sensor or actuator, and the requesting (master) device is usually a
controller. Also known as master/slave.

resource Hardware settings used by National Instruments CAN hardware,
including an interrupt request level (IRQ) and an 8 KB physical memory
range (such as D0000 to D1FFF hex).

S

s Seconds.

sensor A device that measures electrical, mechanical, or other signals from an
external, real-world variable; in the context of device networks, sensors
are devices that send their primary data value onto the network; examples
include temperature sensors and presence sensors. Also known as
transmitter.

standard arbitration ID An 11-bit arbitration ID. Frames that use standard IDs are often referred
to as CAN 2.0 Part A; standard IDs are by far the most commonly used.

U

unsolicited Connections that transmit data on the network sporadically based on an
external event. Also known as nonperiodic, sporadic, and event driven.

W

watchdog timeout A timeout associated with a connection that expects to receive network
data at a specific rate. If data is not received before the watchdog timeout
expires, the connection is normally stopped. You can use watchdog
timeouts to verify that the remote node is still operational.

© National Instruments Corporation I-1 NI-Can Programmer Reference Manual for Win32

Index

A
attributes

CAN Network Interface Object, 3-5 to 3-
12

NC_ATTR_ABS_TIME, 3-8
NC_ATTR_BAUD, 3-5
NC_ATTR_CAN_COMP_STD, 3-

11
NC_ATTR_CAN_COMP_XTD, 3-

12
NC_ATTR_CAN_MASK_STD, 3-

11
NC_ATTR_CAN_MASK_XTD, 3-

12
NC_ATTR_PROTOCOL, 3-9
NC_ATTR_PROTOCOL_VERSIO

N, 3-10
NC_ATTR_READ_PENDING, 3-9
NC_ATTR_READ_Q_LEN, 3-7
NC_ATTR_SOFTWARE_VERSIO

N, 3-10
NC_ATTR_START_ON_OPEN, 3-

5
NC_ATTR_STATE, 3-6
NC_ATTR_STATUS, 3-6
NC_ATTR_TIMESTAMPING, 3-8
NC_ATTR_WRITE_PENDING, 3-

9

NC_ATTR_WRITE_Q_LEN, 3-7
CAN Object

NC_ATTR_BKD_CAN_RESPONS
E, 3-21

NC_ATTR_BKD_CHANGES_ON
LY, 3-20

NC_ATTR_BKD_PERIOD, 3-18
NC_ATTR_BKD_READ_SIZE, 3-

19
NC_ATTR_BKD_TYPE, 3-17
NC_ATTR_BKD_WHEN_USED,

3-18
NC_ATTR_BKD_WRITE_SIZE, 3-

19
NC_ATTR_READ_PENDING, 3-

23
NC_ATTR_READ_Q_LEN, 3-22
NC_ATTR_STATE, 3-21
NC_ATTR_STATUS, 3-22
NC_ATTR_TIMESTAMPING, 3-

23
NC_ATTR_WRITE_PENDING, 3-

24
NC_ATTR_WRITE_Q_LEN, 3-23

B
bulletin board support, C-1
bus off states, CAN Network Interface

Object, 3-4

Index

Manual Name I-2 © National Instruments Corporation

C
CAN Network Interface Object, 3-3 to 3-15

attributes, 3-5 to 3-12
NC_ATTR_ABS_TIME, 3-8
NC_ATTR_BAUD, 3-5
NC_ATTR_CAN_COMP_STD, 3-

11
NC_ATTR_CAN_COMP_XTD, 3-

12
NC_ATTR_CAN_MASK_STD, 3-

11
NC_ATTR_CAN_MASK_XTD, 3-

12
NC_ATTR_PROTOCOL, 3-9
NC_ATTR_PROTOCOL_VERSIO

N, 3-10
NC_ATTR_READ_PENDING, 3-9
NC_ATTR_READ_Q_LEN, 3-7
NC_ATTR_SOFTWARE_VERSIO

N, 3-10
NC_ATTR_START_ON_OPEN, 3-

5
NC_ATTR_STATE, 3-6
NC_ATTR_STATUS, 3-6
NC_ATTR_TIMESTAMPING, 3-8
NC_ATTR_WRITE_PENDING, 3-

9
NC_ATTR_WRITE_Q_LEN, 3-7

description, 3-3 to 3-4
encapsulates, 3-3
error active, error passive, and bus off

states, 3-4
functions

ncAction, 3-13
ncRead, 3-14
ncWrite, 3-15

object name, 3-3
CAN Object

attributes

NC_ATTR_BKD_CAN_RESPONS
E, 3-21

NC_ATTR_BKD_CHANGES_ON
LY, 3-20

NC_ATTR_BKD_PERIOD, 3-18
NC_ATTR_BKD_READ_SIZE, 3-

19
NC_ATTR_BKD_TYPE, 3-17
NC_ATTR_BKD_WHEN_USED,

3-18
NC_ATTR_BKD_WRITE_SIZE, 3-

19
NC_ATTR_READ_PENDING, 3-

23
NC_ATTR_READ_Q_LEN, 3-22
NC_ATTR_STATE, 3-21
NC_ATTR_STATUS, 3-22
NC_ATTR_TIMESTAMPING, 3-

23
NC_ATTR_WRITE_PENDING, 3-

24
NC_ATTR_WRITE_Q_LEN, 3-23

configurations supported
examples, 3-29 to 3-31

periodic polling of remote data
(figure), 3-31

periodic transmission (figure),
3-30

polling remote data using
ncWrite (figure), 3-30

Receive Value Periodically, 3-26 to
3-27

Receive Value Unsolicited, 3-26
Receive Value with Call, 3-27
Transmit Value by Response Only,

3-28 to 3-29
Transmit Value Periodically, 3-28
Transmit Value with Call, 3-29

description, 3-16
encapsulates, 3-16
functions

Index

© National Instruments Corporation I-3 Manual Name

ncAction, 3-24
ncRead, 3-24 to 3-25
ncWrite, 3-25

object name, 3-16
code, NI-CAN status format, B-2
configurations supported by CAN Object

examples, 3-29 to 3-31
periodic polling of remote data

(figure), 3-31
periodic transmission (figure), 3-30
polling remote data using ncWrite

(figure), 3-30
Receive Value Periodically, 3-26 to 3-27
Receive Value Unsolicited, 3-26
Receive Value with Call, 3-27
Transmit Value by Response Only, 3-28

to 3-29
Transmit Value Periodically, 3-28
Transmit Value with Call, 3-29

customer communication, xii, C-1 to C-2

D
data types, NI-CAN host (table), 1-1 to 1-3
documentation

conventions used in manual, xi
how to use manual set, ix-x
organization of manual, x
related documentation, xi-xii

E
electronic support services, C-1 to C-2
e-mail support, C-2
error active, CAN Network Interface Object,

3-4
error passive, CAN Network Interface

Object, 3-4
error/warning indicators (severity), B-1 to B-

2

F
Fax-on-Demand support, C-2
FTP support, C-1
functions

CAN Network Interface Object
ncAction, 3-13
ncRead, 3-14
ncWrite, 3-15

CAN Object
ncAction, 3-24
ncRead, 3-24 to 3-25
ncWrite, 3-25

NI-CAN
list of functions (table), 2-2
ncAction, 2-3 to 2-4
ncCloseObject, 2-5
ncConfig, 2-6 to 2-9
ncCreateNotification, 2-10 to 2-13
ncGetAttribute, 2-14 to 2-15
ncOpenObject, 2-16 to 2-18
ncRead, 2-19 to 2-22
ncSetAttribute, 2-23 to 2-24
ncWaitForState, 2-25 to 2-26
ncWrite, 2-27 to 2-29

M
manual. See documentation.

N
ncAction function

CAN Network Interface Object, 3-13
CAN Object, 3-24
NI-CAN, 2-3 to 2-4

NC_ATTR_ABS_TIME, 3-8
NC_ATTR_BAUD, 3-5
NC_ATTR_BKD_CAN_RESPONSE, 3-21
NC_ATTR_BKD_CHANGES_ONLY, 3-20
NC_ATTR_BKD_PERIOD, 3-18

Index

Manual Name I-4 © National Instruments Corporation

NC_ATTR_BKD_READ_SIZE, 3-19
NC_ATTR_BKD_TYPE, 3-17
NC_ATTR_BKD_WHEN_USED, 3-18
NC_ATTR_BKD_WRITE_SIZE, 3-19
NC_ATTR_CAN_COMP_STD, 3-11
NC_ATTR_CAN_COMP_XTD, 3-12
NC_ATTR_CAN_MASK_STD, 3-11
NC_ATTR_CAN_MASK_XTD, 3-12
NC_ATTR_PROTOCOL, 3-9
NC_ATTR_PROTOCOL_VERSION, 3-10
NC_ATTR_READ_PENDING, 3-9, 3-23
NC_ATTR_READ_Q_LEN, 3-7, 3-22
NC_ATTR_SOFTWARE_VERSION, 3-10
NC_ATTR_START_ON_OPEN, 3-5
NC_ATTR_STATE, 3-6, 3-21
NC_ATTR_STATUS, 3-6, 3-22
NC_ATTR_TIMESTAMPING, 3-8, 3-23
NC_ATTR_WRITE_PENDING, 3-9, 3-24
NC_ATTR_WRITE_Q_LEN, 3-7, 3-23
ncCloseObject function, 2-5
ncConfig function

CAN Network Interface Objects, 2-7
CAN Objects, 2-7
NI-CAN, 2-6 to 2-9

description, 2-6 to 2-7
example, 2-8 to 2-9
format, 2-6
input, 2-6
return status, 2-8
using, 2-7 to 2-8

ncCreateNotification function, 2-10 to 2-13
callback description, 2-11 to 2-12
callback parameters, 2-11
callback prototype, 2-11
callback return value, 2-11
description, 2-10 to 2-11
example, 2-13
format, 2-10
input, 2-10
return status, 2-12

NC_ERR_ALREADY_OPEN (0006 Hex)
status code, B-8

NC_ERR_BAD_NAME (0003 Hex) status
code, B-5 to B-6

NC_ERR_BAD_PARAM (0004 Hex) status
code, B-6

NC_ERR_BAD_VALUE (0005 Hex) status
code, B-7

NC_ERR_CAN_BUS_OFF (0101 Hex)
status code, B-11 to B-12

NC_ERR_DRIVER (0002 Hex) status code,
B-5

NC_ERR_NOT_STOPPED (0007 Hex)
status code, B-8

NC_ERR_OLD_DATA (0009 Hex) status
code, B-10 to B-11

NC_ERR_OVERFLOW (0008 Hex) status
code, B-9 to B-10

NC_ERR_TIMEOUT (0001 Hex) status
code, B-4

ncGetAttribute function, 2-14 to 2-15
ncOpenObject function, 2-16 to 2-18
ncRead function

CAN Network Interface Object, 3-14
CAN Object, 3-24 to 3-25
NI-CAN, 2-19 to 2-22

description, 2-19 to 2-21
examples, 2-22
format, 2-19
input and output, 2-19
return status, 2-21

ncSetAttribute function, 2-23 to 2-24
NC_ST_ERROR object state (table), A-2
NC_ST_READ_AVAIL object state (table),

A-1
NC_ST_STOPPED object state (table), A-2
NC_ST_WARNING object state (table), A-2
NC_ST_WRITE_SUCCESS object state

(table), A-1
NC_SUCCESS (0000 Hex) status code, B-3
ncWaitForState function, 2-25 to 2-26

Index

© National Instruments Corporation I-5 Manual Name

ncWrite function
CAN Network Interface Object, 3-15
CAN Object, 3-25
NI-CAN, 2-27 to 2-29

NI-CAN functions
list of functions (table), 2-2
ncAction, 2-3 to 2-4
ncCloseObject, 2-5
ncConfig, 2-6 to 2-9
ncCreateNotification, 2-10 to 2-13
ncGetAttribute, 2-14 to 2-15
ncOpenObject, 2-16 to 2-18
ncRead, 2-19 to 2-22
ncSetAttribute, 2-23 to 2-24
ncWaitForState, 2-25 to 2-26
ncWrite, 2-27 to 2-29

NI-CAN host data types (table), 1-1 to 1-3
NI-CAN object states

format (figure), A-1
states (table), A-1 to A-2

NI-CAN status format, B-1 to B-2
code, B-2
error/warning indicators (severity), B-1

to B-2
format (figure), B-1
qualifier, B-2

Q
qualifiers. See status codes and qualifiers.

R
Receive Value Periodically

attribute settings (table), 3-27
description, 3-26
example (figure), 3-31

Receive Value Unsolicited
attribute settings (table), 3-26
description, 3-26

examples, 3-30, 3-31
Receive Value with Call

attribute settings (table), 3-27
description, 3-27
example (figure), 3-30

S
status codes and qualifiers

NC_ERR_ALREADY_OPEN (0006
Hex), B-8

NC_ERR_BAD_NAME (0003 Hex), B-
5 to B-6

NC_ERR_BAD_PARAM (0004 Hex),
B-6

NC_ERR_BAD_VALUE (0005 Hex),
B-7

NC_ERR_CAN_BUS_OFF (0101 Hex),
B-11 to B-12

NC_ERR_DRIVER (0002 Hex), B-5
NC_ERR_NOT_STOPPED (0007 Hex),

B-8
NC_ERR_OLD_DATA (0009 Hex), B-

10 to B-11
NC_ERR_OVERFLOW (0008 Hex), B-

9 to B-10
NC_ERR_TIMEOUT (0001 Hex), B-4
NC_SUCCESS (0000 Hex), B-3
NI-CAN status format, B-1 to B-2

code, B-2
error/warning indicators (severity),

B-1 to B-2
format (figure), B-1
qualifier, B-2

summary of status codes (table), B-3

T
technical support, C-1 to C-2
telephone and fax support, C-2
Transmit Value by Response Only

Index

Manual Name I-6 © National Instruments Corporation

attribute settings (table), 3-29
description, 3-28
examples (figure), 3-30, 3-31

Transmit Value Periodically
attribute settings (table), 3-28
description, 3-28
example (figure), 3-30

Transmit Value with Call
attribute settings (table), 3-29
description, 3-29

	NI-CAN™ Programmer Reference Manual
	Warranty
	Copyright
	Trademarks
	Medical Warning
	Table of Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 NI-CAN Host Data Types
	Chapter 2 NI-CAN Functions
	Function Names
	Purpose
	Format
	Input and Output
	Description
	Return Status
	Examples
	List of NI-CAN Functions
	ncAction
	ncCloseObject
	ncConfig
	ncCreateNotification
	ncGetAttribute
	ncOpenObject
	ncRead
	ncSetAttribute
	ncWaitForState
	ncWrite

	Chapter 3 NI-CAN Objects
	Object Names
	Encapsulates
	Description
	Attributes
	Functions
	CAN Network Interface Object
	CAN Object

	Appendix A NI-CAN Object States
	Appendix B Status Codes and Qualifiers
	NI-CAN Status Format
	Error/Warning Indicators (Severity)
	Code
	Qualifier

	NI-CAN Status Codes and Qualifiers
	NC_SUCCESS (0000 Hex)
	NC_ERR_TIMEOUT (0001 Hex)
	NC_ERR_DRIVER (0002 Hex)
	NC_ERR_BAD_NAME (0003 Hex)
	NC_ERR_BAD_PARAM (0004 Hex)
	NC_ERR_BAD_VALUE (0005 Hex)
	NC_ERR_ALREADY_OPEN (0006 Hex)
	NC_ERR_NOT_STOPPED (0007 Hex)
	NC_ERR_OVERFLOW (0008 Hex)
	NC_ERR_OLD_DATA (0009 Hex)
	NC_ERR_CAN_BUS_OFF (0101 Hex)

	Appendix C Customer Communication
	Technical Support Form
	Documentation Comment Form

	Glossary
	Index
	Figures
	Figure 3-1. Example of Periodic Transmission
	Figure 3-2. Example of Polling Remote Data Using ncWrite
	Figure 3-3. Example of Periodic Polling of Remote Data
	Figure A-1. State Format
	Figure B-1. Status Format

	Tables
	Table 1-1. NI-CAN Host Data Types
	Table 2-1. NI-CAN Functions
	Table 3-1. Actions Supported by the CAN Network Interface Object
	Table 3-2. NCTYPE_CAN_FRAME_TIMED Field Names
	Table 3-3. NCTYPE_CAN_FRAME Field Names
	Table 3-4. NCTYPE_CAN_DATA_TIMED Field Names
	Table 3-5. NCTYPE_CAN_DATA Field Name
	Table 3-6. Attribute Settings for Receive Value Unsolicited
	Table 3-7. Attribute Settings for Receive Value Periodically
	Table 3-8. Attribute Settings for Receive Value with Call
	Table 3-9. Attribute Settings for Transmit Value Periodically
	Table 3-10. Attribute Settings for Transmit Value by Response Only
	Table 3-11. Attribute Settings for Transmit Value with Call
	Table A-1. NI-CAN Object States
	Table B-1. Determining Severity of Status
	Table B-2. Summary of Status Codes

